

AFRL-RI-RS-TR-2007-268
Final Technical Report
December 2007

ABSTRACT MACHINES FOR POLYMORPHOUS
COMPUTING

University of Southern California

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. L171

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2007-268 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

MARK NOVAK WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DEC 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jun 01 – Jun 07
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-01-C-0171

4. TITLE AND SUBTITLE

ABSTRACT MACHINES FOR POLYMORPHOUS COMPUTING (AMP)

5c. PROGRAM ELEMENT NUMBER
62712E

5d. PROJECT NUMBER
AMPC

5e. TASK NUMBER
SN

6. AUTHOR(S)

Stephen Crago

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
10920 Wilshire Blvd 1200
Los Angeles CA 90024-6523

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/RIGB
3701 North Fairfax Dr. 525 Brooks Rd
Arlington VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2007-268

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. WPAFB PA# 07-0580

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Abstract Machines for Polymorphous Computing (AMP) project made important contributions to the understanding of the
programming of polymorphous computing architectures. Polymorphous architectures are a promising technology for exploiting
explicit on-chip parallelism, which the microprocessor industry has recognized is necessary for the survival of the industry. The
AMP project developed software tools to explore programming methodologies for polymorphous architectures, including
Morphware. The AMP project mapped application to polymorphous architectures and demonstrated significant, scalable speedups.
Finally, the AMP project developed prototype hardware that enabled the development of realistic and complex applications for
polymorphous architectures

15. SUBJECT TERMS
Multiprocessor architecture, polymorphous computing

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Mark E. Novak

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

57
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 i

Table of Contents

1. Introduction... 1
2. Software .. 5

a. Communication Application Programming Interface... 5
b. Configuration Management Software... 11

(1) Configuration Management Overview ... 11
(2) Configuration Management Problem Formulation... 12
(3) Configuration Management Model... 15
(4) On-Line Adaptation .. 18

c. Stream Virtual Machine.. 20
d. Application Performance .. 26
e. Coherent Sidelobe Canceller and DARPATech Demonstrations............................... 29
f. Comparison to Data-Intensive Architectures.. 31
g. Knowledge Aided Processing ... 35

3. Hardware... 41
a. Raw Hardware .. 41

(1) Raw Handheld... 41
(2) Raw Fabric .. 42

b. TRIPS USB Interface.. 43
4. Conclusions... 46
5. References... 47
6. Acronyms.. 50

List of Figures

Figure 1. Abstract Machine Models.. 1
Figure 2. Communication API Overview ... 5
Figure 3. Communication API Overhead Summary... 8
Figure 4. Communication API Throughput .. 9
Figure 5. Communication API Performance for Corner Turn.. 10
Figure 6. Communication API Performance for FFT... 11
Figure 7. System-Level Reconfiguration Framework .. 14
Figure 8. Configuration Management Framework ... 16
Figure 9. Functions promoteConstraint and demoteConstraint from Figure 8 17
Figure 10. Online Adaptation Approach... 19
Figure 11. Experimental Results for CMF.. 20
Figure 12. HLC and LLC for Raw.. 21
Figure 13. SVM Matrix Multiplication Results.. 23
Figure 14. SVM Throughput Results for FIR Bank ... 24
Figure 15. SVM Latency Results for FIR Bank ... 24
Figure 16. GMTI Execution Schedule .. 25
Figure 17. GMTI Cycle Breakdown ... 26
Figure 18. GMTI Block Diagram ... 27

 ii

Figure 19. GMTI Parallelism.. 28
Figure 20. GMTI Computation Balance ... 28
Figure 21. GMTI Resource Mapping.. 29
Figure 22. GMTI Single-Tile Raw Performance .. 29
Figure 23. Raw VSIPL Demonstration... 30
Figure 24. TRIPS VSIPL Demonstration ... 31
Figure 25. Architecture Parameters and Performance Summary.. 31
Figure 26. Speedup Relative to PowerPC Measured by Cycles (Left) and Time (Right) 32
Figure 27. Raw Handheld Block Diagram.. 41
Figure 28. Raw Handheld Laboratory Photograph ... 42
Figure 29. Raw Fabric System Concept ... 43
Figure 30. Raw Fabric System Running in Laboratory .. 43
Figure 31. TRIPS USB Interface Board Functional Block Diagram...................................... 44

 1

1. Introduction
Polymorphous computing elements provide very high performance across a range of

applications by providing morphable microarchitectures. The increased level of
programmability available through morphing has become necessary to overcome potential
bottlenecks to performance and to improve efficiency. As feature sizes shrink, the level of
microparallelism increases, and off-chip communication becomes more expensive. While
allowing more parts of the microarchitecture to be programmed increases performance
potential across a wide range of applications, it also has the potential to increase the
complexity of programming polymorphous devices. The goal of the AMP project is to
provide a programming environment for programming polymorphous architectures than
allows the performance potential to be exploited while minimizing programming overhead.
Goals of the AMP project also include demonstrating end-to-end application performance on
polymorphous computing architectures and developing board and system-level hardware
prototypes.

The original focus of the AMP project as proposed was to develop abstract models for
programming polymorphous architectures. The abstract machine models were to allow an
application to be expressed in a form that is natural to the application domain and to allow an
efficient mapping to polymorphous computing architectures. An abstract machine model
represents the view of a computer architecture or class of architectures that is presented to the
application programmer or compiler. The purpose of the abstract machine is to present a
simplified, yet accurate, view of the architecture to the programmer. While an abstract
machine does present a view of the architecture to the programmer, an abstract machine can
have more than one hardware implementation. Figure 1 shows an Abstract Machine B, which
is mapped to Hardware Machine 1 and Hardware Machine 2.

Figure 1 also shows that different applications can be mapped to different abstract
machines, even on the same (morphable) hardware architecture. Different applications
domains are naturally best expressed using different abstract machine models. Streaming
applications are best described using abstract machines that support streaming, and data
parallel programs are best described using abstract machines that support SIMD or vector
abstractions. The flexibility of polymorphous computing architectures allows the same
hardware architecture to implement different abstract machines.

In a performance-critical
environment, the abstract machine must
satisfy two additional properties. First, it
must allow the application to be expressed
so that properties of an application that the
architecture can exploit are not lost. For
example, existing parallelism should not be
hidden if an architecture is to exploit

parallelism. Second, the abstract machine must allow the sophisticated application
programmer the ability to control performance-critical aspects of the program execution on
the hardware. Because many embedded systems require predictable computing performance,

Hardware Machine 1

Abstract
Machine A

Abstract
Machine B

App
W

App
X

App
Y

App
Z

Hardware Machine 2

Abstract
Machine B

Abstract
Machine C

App
Y

App
Z

App
U

App
V

Figure 1. Abstract Machine Models

 2

the abstract machine cannot be so abstract as to make the performance of an application
unpredictable.

DARPA’s PCA (Polymorphous Computing Architectures) program formed a group
called the Morphware Forum, consisting of PCA contractors and government representatives,
to agree on programming interfaces for the PCA architectures [1]. The Morphware Forum
was given the charter to define, in a consensus process including all PCA participants, stable
interfaces (abstract machines) to be used for all PCA architectures. The Morphware Forum
agreed to a two-level compilation approach, which defined one standard interface at the
application specification level and another as an intermediate compiler level. The SAPI
(stable application programming interface) defined a common programming interface used
by the high-level compiler to target PCA architectures. The SAAL (stable architecture
abstraction layer) defined a back-end for the high-level compiler, which exposes parallelism
data movement in an architecture-neutral way. This SAAL includes a model for multi-
threaded applications, called the Thread Virtual Machine (TVM), and another model for
streaming applications, called the Stream Virtual Machine (SVM). These virtual machines
are instantiations of the abstract machines envisioned by the AMP project.

The formulation of the Morphware Forum and its products, which the AMP project
participated in, allowed the AMP project to shift its focus to contribute complementary
technologies for the PCA program. In addition to the hardware prototyping work and
application performance analysis and demonstration work that was part of the original charter
of the AMP project, the project focus shifted toward experimentation with low-level
communication implementations for PCA architectures, which were used to implement the
Morphware SAAL and performance analysis and optimization of the Morphware SVM.
Work in the first phase of AMP also included a modeling framework used to investigate run-
time morphing capability. Because the MIT Raw platform [2] was much more mature while
much of the AMP development was conducted, most of the work on the AMP project was
conducted on the Raw architecture.

The abstract machines described above allow mapping to multiple PCA nodes, but
are focused on static compiler-driven mapping. To enable construction of effective
application development environments for dynamic systems, we developed an application
modeling framework and hierarchical verification methodology for robust design of
polymorphous systems [3]. The modeling framework, called the Configuration Modeling
Framework (CMF), provides a platform-independent approach to incorporating run-time
morphing capability into application development environments. This capability leads to
automated co-synthesis of parameterized hardware and software structures and their
configurations; synthesis of run-time configuration management software; and hierarchical,
formal verification of key configuration properties, such as communication consistency
requirements, deadlock avoidance, and parameter range validity. Our verification approach is
based on systematic decomposition of execution into local regions of time in which
subsystems satisfy relevant properties. By evaluating compositions of these properties
through hybrid static and run-time techniques, the entire polymorphous system can be
verified so that errors are detected as soon as they occur.

The Navy Radar System Signal Processing application is a large system, multi-
mission problem that will enable Theater Ballistic Missile Defense (TBMD) capability to the

 3

Navy. The AMP project included a system prime, Lockheed Martin, which provide
representative high-level application code and evaluation of AMP software. The US Navy
surface combatants face a new set of challenges over the next few decades. A Navy designed
years ago for open ocean combat now finds itself confronted with combat situations in the
littoral waters across the globe. With this new mission comes a new set of threats. Small,
stealthy and fast threats at low altitude as well as ballistic missile threats at high altitude that
require a new degree of discrimination. These new threats place a new and significant load
on the shipboard sensors that are required to detect, track and classify across the threat space
and motivate polymorphous computing architectures.

The Sanders Polymorphic Channelized Receiver (PCR) is an implementation of
polymorphic computing that has application to real-time resource constrained platforms, in
particular space and airborne platforms performing RF receiver tasks such as EW or
communications. The PCR morphs into different channelized receiver configurations in real
time to improve the probability and fidelity of detection. Based on a set of primitives, the
PCR tailors its receiver configuration in terms of the quantity of channels, channel
bandwidth, and channel center frequency to optimally address the signal of interest. Each
channel can have a unique configuration, applying a tailored set of frequency components
based on the signal quality, providing the opportunity to attenuate or eliminate those
components attributed to noise that could degrade the output quality. An efficient
architecture for this class of problem has application far beyond the RF receiver user
community. For example, a potential application of the PCR structure in a spatial domain
(rather than in the frequency domain) results in a unique adaptive beamformer. BAE
SYSTEMS participated in the AMP project to provide feedback to ensure relevance of AMP
technology the PCR.

The AMP project also developed system-level prototype hardware, primarily for the
Raw architecture. The development of system-level prototype hardware serves several
purposes. First, it allows a validation of the design principles and performance metrics for the
architecture under development. Second, it permits the execution of realistically sized
benchmarks, which would be infeasible to run on a simulator. Third, it provides a platform
on which technology demonstrations can be developed. The hardware developed by the AMP
project achieved all three of these objectives.

The AMP team developed boards that could be tiled together to create a 64-node
multiprocessor, called the Raw Fabric, based on the MIT Raw processor. The AMP team
mapped DoD applications to the Raw chip and Raw Fabric. Having an independent team
map DoD applications to the Raw architecture provided several advantages. First, and most
importantly, the MIT Raw team did not focus on DoD applications. The second advantage is
that having an independent team use the Raw software and architecture provided objective
feedback to both the MIT team and DARPA about the Raw architecture. This additional
feedback contributed to the ultimate success of the Raw architecture.

In addition to the primary body of work the AMP project did under the PCA program,
there were two supplemental parts of the project, added by other programs. First, the AMP
team performed performance analysis for the Knowledge Aided Signal and Sensor
Processing with Expert Reasoning (KASSPER) program [5]. Second, the AMP team

 4

developed concepts that contributed to the formulation of the Architectures for Cognitive
Information Processing (ACIP) program.

In this final report, we describe the work completed by the AMP project. Section 2
discusses the software tools developed by the project and the application mapping results.
Section 3 discusses the hardware prototyping. Section 4 describes the work the AMP project
did for KASSPER, and Section V discusses the work the project did laying groundwork for
ACIP. Finally, Section 6 summarizes the conclusions.

 5

2. Software

a. Communication Application Programming Interface
The AMP project developed a toolset and application programming interface (API) to

help automate programming the complex inter-tile communications on Raw. In order to
make the programming and debugging inter-tile communication easier, the AMP team
developed: 1) a programming model, which enables the programmer to describe and debug
the communication pattern in an architecture-independent way, and 2) a toolset, which
schedules the inter-tile communications and generates switch and tile codes automatically.

The purposes of the API and the tools for the static network are as follows:
• Provide a higher-level message passing interface to Raw programmers (at the

expense of some performance)
• Ease debugging for multi-tile applications
• Automatic partitioning and routing of inter-tile communications into a

sequence of sets of collision-free communications
• Automatic generation of switch code and transparent integration of switch and

tile code
An overview of the AMP approach is shown in Figure 2. Our approach consists of

two phases, a PROFILE phase and RUN phase. The API for the static network provides the
toolset with information about inter-tile communication in the PROFILE phase and
configures the Raw switch processors in the RUN phase.

Each inter-tile communication is described with four parameters: a unique
communication identification number, source tile number, destination tile number, and stage
number. The stage number allows ordering to be enforced upon inter-tile communications
when there are data dependencies. The end of a stage acts as a barrier synchronization point.
Communications within a stage do not have any dependencies and can be executed in

Static routing
Inform ation

Developm ent

w/ M PI

Augm ent

w/ APIs

Source code

Routing
Tool

Routing
Table in
a C file

RUN

Code
Generation

Tool

Final
Routing
Input

Switch
Setup
Code

Com pile
& Run

Run on RAW

RAW -gcc
Com pile

PROFILE TOOL CHAIN

Static routing
Inform ation

Developm ent

w/ M PI

Augm ent

w/ APIs

Source code

Routing
Tool

Routing
Tool

Routing
Table in
a C file

RUN

Code
Generation

Tool

Code
Generation

Tool

Final
Routing
Input

Switch
Setup
Code

Com pile
& Run

Com pile
& Run

Com pile
& Run

Run on RAW

RAW -gcc
Com pile

Run on RAW

RAW -gcc
Com pile

PROFILE TOOL CHAINTOOL CHAIN

Figure 2. Communication API Overview

 6

parallel. It is the application programmer’s responsibility to group the communications into
stages and to specify the sequence of the stages. The toolset checks the schedulability of the
communications in a stage and partitions the stage into schedulable sub-stages.

In the profile stage, inter-tile communication is profiled by the communication
library, which implements the communication API on MPI (Message Passing Interface) [4].
The user can program and debug the program using MPI, which makes debugging easier
because the MPI/Linux programming environment is more mature than the Raw
programming environment. This stage can be carried out on any machine where MPI runs.
For example, an x86/Linux workstation with MPI can be used to compile and execute at the
profile stage.

Profile information is used by the routing tool to schedule the communication and to
generate routing information about the communication. The routing tool also generates a
routing table and includes it in the C header files. In compiling, “ROUTE_MODE” is
assumed to be declared in the code, which makes conditional compilation possible. Any
profile-specific code can be added by using a conditional compilation statement in the source
code.

The original code can then be cross-compiled and linked by the Raw cross-compiler
with switch code and the routing table to generate the Raw executable code. Any run-phase-
specific code can be added using a conditional compilation statement “#ifdef RUN_MODE”
in the source code. Code changes from profile phase to run phase are minimal, but hardware-
specific routines and actual communication routines need to be changed. Some examples are
summarized in Table 1.

PROFILE phase RUN phase
MPI_Comm_rank(); raw_get_abs_pos_x();

raw_get_abs_pos_y();
MPI_SEND() static_send_from_mem();
MPI_RECV() Static_recv_to_mem();

Table 1. PROFILE and RUN Phase Code Differences

For programming large applications on Raw, it is difficult to write switch and tile
code manually that utilizes the static network on Raw. The AMP project developed a model
for programming applications such that switch and tile communication code could be
generated automatically. This model is implemented with the route2switch tools. The
route2switch tools need a routing pattern for the communications involved in the application
as input. There may be some ordering enforced upon inter-tile communications in the
application because of data-dependency or resource contention. Therefore, the routing pattern
for communications in the application may be divided into several stages, where these stages
act as barrier synchronization points. So in the application code, we are assured that if in the
routing pattern a tile X appears in stages p and q such that p < q, then, in tile X's code, stage p
code should be executed before code for stage q code.

For large applications, manually finding a feasible routing arrangement for all
communication can be a very difficult task and is prone to human error. The AMP routing
tools can take all the communications in the application, which may be divided into stages as

 7

an input, and then route them so that the resulting routing pattern does not deadlock and is
acceptable.

Routes for several communications are acceptable when all the tiles involved in the
routes can be programmed so that each tile in the communication pattern receives or sends
the desired data. At each stage, a communication circuit monopolizes the links (but not the
switches) in the path from the source tile to the destination tile. Therefore, the AMP routing
tool must resolve resource contention within stages. For example, in a 4x4 tile system, the
routing pattern of 0→1→2 and 1→2→6 is not an acceptable routing pattern for
communications 0→2 and 1→6 because the link from 1→2 is overutilized (time
multiplexing on the links is supported by the architecture but beyond the scope of the AMP
tools). An acceptable routing pattern for the same set of communications may be 0→1→2
and 1→5→6. If the input to the routing tool is a set of communications such that some
communications in a stage cannot be resolved, then the routing tool can split one stage into
several stages.

There are two versions of the router that make different trade-offs of optimization
versus the solution-execution time. The version with lower run-time and less optimization
works by first making repetitive passes through all the still unrouted communications in the
current stage in the input. When all the communications in a stage are routed, the next stage
is read and routed in a similar fashion. A pass involves trying to route the first still un-routed
communication in the stage and, if it is routable, then committing the route found for it. The
next communication in the current stage is then read, and the router tries to find a route so
that it can be routed in the same stage as the first one. If it not possible, that communication
is thrown into the list of unrouted communications. The next communication is then read and
processed in a similar manner and so on until all the communications in the current stage are
exhausted. If unrouted list is not empty, the current stage is then initialized and the process is
continued until the list is empty. A new stage from the input file is then read into the current
stage. There is no backtracking in this algorithm and the route for a communication is not
changed once it is committed. This leads to faster execution time. The complexity of the
algorithm increases linearly as the number of communications increases.

The longer-running version of the router exhaustively tries to route all the
communications in a single stage of the input file into a single output stage. If no routing
pattern exists where this may be possible, it partitions the input stage into two stages of equal
size and then tries to exhaustively route all in each of these two stages so that the output is
only two stages. The stage that is not fully routable is again partitioned and this process is
repeated. There is a lot of backtracking involved in exhaustively finding the optimal solution
and this leads to high execution times. The complexity of this algorithm is exponential with
the number of communications.

The AMP project also developed an API for using the Raw dynamic network. This
API and library are much simpler, because routing is done automatically by the hardware.
The industry-standard MPI communication library also provides communication on
multiprocessors with dynamic routing, but provides higher level functionality. This higher
level functionality incurs additional overhead and a more sophisticated implementation that
may not be appropriate for a single-chip multi-tile architecture like Raw, which can provide
much lower latency communication, which motivates lower latency message passing

 8

software. Table 2 shows some of the trade-offs for various communication methods,
including writing fully manual, optimized code and the static and dynamic communication
APIs discussed above.

 Fully

Manual
Static
Comm. API

Dynamic Comm. API

Application Partitioning Manual Manual Manual
Network Used Static Net. Static Net. Dynamic Net.
Communication
Scheduling

Manual Automatic
by the
routing tool

No scheduling

Integration of computation
/ communication code

Loose Tight Tight

Tools used Routing
tool,
Switch code
generator
tool

Routing
tool,
Switch code
generator
tool

Dynamic network library

Dynamic communication No No Yes

Communication
performance

Fastest Fast Not as fast

Table 2. Communication API Trade-offs

Figure 3 summarizes the performance of the communication APIs compared to

manual static coding on Raw. In manual static coding, the Raw tile switches can be pre-
programmed with a known interconnect pattern, and network operands can be referenced
without overhead, using network register names as operands in arithmetic operations. By

Packet O verhead

0
2
4
6
8

10
12
14
16
18
20

Static (M anual) Static Com m .
API (Avg.)

Dynamic Com m.
API (best)

O
ve
rh
ea
d
(C
yc
le
s)

Connection Setup O verheads

0
10
20
30
40
50
60
70
80
90

100

Static (M anual) Static Com m .
API (Avg.)

Dynam ic Com m .
API (best)

O
ve
rh
e
ad
 (
C
yc
le
s)

Packet O verhead

0
2
4
6
8

10
12
14
16
18
20

Static (M anual) Static Com m .
API (Avg.)

Dynamic Com m.
API (best)

O
ve
rh
ea
d
(C
yc
le
s)

Connection Setup O verheads

0
10
20
30
40
50
60
70
80
90

100

Static (M anual) Static Com m .
API (Avg.)

Dynam ic Com m .
API (best)

O
ve
rh
e
ad
 (
C
yc
le
s)

Figure 3. Communication API Overhead Summary

 9

comparison, the static communication API incurs higher overhead to set up a given
communication pattern, which is primarily due to the need to check on where the global
application is before doing communication to avoid interfering with communication that
might be passing through a given node. The table look-up to determine the current location
can take a cache miss, which causes higher overhead. The static communication API incurs
no overhead on each packet, because no header is needed since the communication pattern is
programmed into the switch, just as in the static manual case. The dynamic communication
API must synchronize between communication tiles before initiating communication, but this
communication is always on-chip, so it is less than the setup overhead for static
communication. The dynamic communication API necessarily incurs overhead for each
packet, because the header, which specified the destination and packet length, must be set up
for each packet. While this per packet overhead appears high relative to static
communication, it is orders of magnitude lower than the per packet overhead incurred by a
heavyweight message passing API like MPI.

Figure 4 shows the throughput of the communication APIs. As expected, manually
optimized static communication has the highest throughput, achieving over 50% of peak
throughput for packets of less than 10 words and near peak for packets of above 100 words.
The static API performance is very close to dynamic API performance for packet sizes below
500 words because of the setup overhead. However, for large data transfer sizes, performance
approaches that of manually optimized static code.

In order to test the performance of the communication of APIs on real applications,
we implemented a corner turn and a distributed FFT (Fast Fourier Transform) using the
communication APIs and compared them to hand-optimized static mappings. Figure 5 shows
the normalized performance for the corner turn kernel for three data sizes using hand
optimization, the static API, and the dynamic API. As expected, performance for the
manually optimized code is the highest, which is shown in the blue bar, normalized to
execution time of 1. Execution time for the static communication API is between 23% and
73% higher, with smaller normalized execution time for larger data sets, since the overhead

Theoretical M axim um Com m. Perform ance

0

0.2

0.4

0.6

0.8

1

1 10 50 100 500 1000 10000

Data transfer size

W
or
ds
/C
yc
le Static

Static Com m .
API
Dynam ic
Com m . API

Figure 4. Communication API Throughput

 10

of setting up the communication paths is amortized over more words. Most of the
performance disparity between the static API and manually optimized code for large data sets
is due to the non-optimal communication pattern discovered by the router. This non-
optimality is a function of the run-time of the router itself; it is infeasible to allow the router
enough execution time to find guarantee that the optimal communication pattern is found.
Execution time for the dynamic communication API is about three times that of the
optimized code. While this performance disparity between the dynamic communication API
and manually optimized code is significant and would be unacceptable for many
applications, corner turn is a communication-only kernel with no computation to overlap for
the computation. So in that sense, the performance overhead incurred by the APIs represents
an upper bound for a real application. This upper bound is not absolute since pathological
communication patterns could incur higher overhead.

To measure the performance of the communication APIs on more realistic mixes of
computation and communication, we also implemented a distributed FFT. Results are shown
in Figure 6, which shows that there is very little performance difference between
communication methods for the FFT, which is relatively compute intensive, but is also an
important kernel central to many embedded signal processing applications. Performance
varies by less than 25%, which the largest variation on the smallest FFT size, where the
overhead is highest.

4x4 CT (Norm alized Exec. Tim e)

0
0.5
1

1.5
2

2.5
3

3.5
4

16x16 32x32 64x64

Data Size

N
or
m
al
iz
ed
 E
x
ec
.
T
im
e Static M anual

Static API
Dynam ic API

Figure 5. Communication API Performance for Corner Turn

 11

b. Configuration Management Software

(1) Configuration Management Overview
It is useful to view polymorphous computing architectures as having configurable

attributes of the architecture and software that are adapted in response to dynamically
changing needs. Such attributes may include items such as inter-processor message routing,
caching policies, scheduling policies, processor voltages, resource allocation to computing
units, and synchronization protocols. A polymorphous computer can be a particularly useful
platform for developing a computing system where applications and performance
requirements change at run-time as one can adaptively configure the architecture to suit the
dynamic constraints and objectives.

This work takes a step towards bridging techniques for scheduling and system
synthesis with reconfigurable processing platforms and the dynamically-changing application
requirements that drive these platforms. The AMP team first formulated the problem of
executing application dataflow graphs on a polymorphous computing architecture such that
specified performance requirements are satisfied, where the requirements may vary over time
and the application may have tasks with non-deterministic execution times (e.g., due to data
dependencies or unpredictable events such as cache misses and interrupts). We analyzed key
properties of this problem and the complexity of some relevant sub-problems. We then
developed a flexible heuristic framework for guiding the run-time configuration adaptation
process, and show through simulation experiments that this approach can efficiently handle
both dynamics in performance requirements and dynamics in task execution time behavior.

In the application model addressed in this work, computational tasks (actors), which
are represented by dataflow graph vertices, in the application are allowed to have stochastic
execution times with static distributions or distributions that may vary slowly over time. The
computing unit is a reconfigurable multiprocessor architecture, and the objective is to find a
mapping of the actors in the application onto the processors in the multiprocessor and the
configuration that the architecture should assume such that performance-related constraints

Total Cycles (FFT, 16 tiles)

0

10000

20000

30000

40000

50000

60000

70000

128 256 512 1024

FFT size

C
y
cl
e
s M anual Static

Static API
Dynam ic API

Figure 6. Communication API Performance for FFT

 12

(e.g., constraints on power, resource usage or throughput) are satisfied and objectives (e.g.,
maximizing throughput or minimizing latency) are optimized effectively. Furthermore, the
constraints and objectives may vary over time, and thus, overall solution quality can be
viewed in terms of how efficiently reconfiguration of the architecture tracks changes in the
application’s requirements. Henceforth, we will refer to this problem as the polymorphous
mapping problem. As can be seen, the polymorphous mapping problem is quite general in
nature and even very restricted special cases can be proved to be NP-complete.

The approach suggested in this work is correspondingly general and can handle
diverse applications and performance requirements. All the reported experiments were
performed on an abstraction of the Raw architecture that incorporates salient features of the
architecture such as the programmability of interconnects between processors. For
experiments, the self-timed execution of applications on this abstracted Raw architecture was
simulated using the inter-processor communication (IPC) graph model [6].

The emphasis in this work is on coordination of the on-line configuration
management process for reconfigurable networks of processors, rather than the development
of specialized configuration optimization techniques (such as fixed-objective scheduling and
allocation) [7]. Our work is complementary to such existing efforts and also to work on
multiprocessor system synthesis [8] [9], which can be used to derive the store of pre-
computed configurations that is input to the techniques developed in this work.

(2) Configuration Management Problem Formulation
A set of relevant metrics, such as latency, throughput, average power, peak power, and
number of resources, is denoted by M. If a certain metric appears as a constraint with a value
to be satisfied when the application executes, then this metric is referred to as a constraint
metric and the value as a constraint value for that particular metric. A constraint value
belongs to the set of real numbers. A pair of constraint metric and constraint value is called a
constrain pair. A sequence of constraint pairs in turn is referred to as a constraint vector, and
is denoted by

V = [(m1, c1),(m2, c2),…,(mK, cK)]
where m1, m2, …, mk represent any K metrics in M, and c1, c2, …, cK represent the
corresponding constraint values, for K ∈ {0,N}, where N is the number of all constraint pairs.
This (possibly empty) sequence of constraint pairs in a constraint vector is prioritized such
that (mi, ci) is a higher priority constraint pair than a constraint pair (mj,cj) if i < j, for i, j ∈ {1,
2, …, K} in a constraint vector V = [(m1, c1),(m2, c2),…,(mK, cK)]. A metric mR that is to be
optimized after all constraints have been satisfied is called a residual objective. A goal g is an
ordered pair (V, mR), where V is a constraint vector and mR is a residual objective. If there is
no residual objective, then the goal is composed of only a constraint vector and can be
represented by (V, �). Here, the symbol � represents the absence of a residual objective. Also,
without loss of generality, the metrics are such that the associated optimization problems are
to minimize the metric (i.e., a lower value of a metric is always better than a higher value).
Metrics for which higher values are more desirable must thus be transformed into
corresponding metrics for which lower values are better. For example, in iterative
applications, the throughput (average rate of completion of application iterations) can be re-
cast as the average iteration period, which is the reciprocal of the throughput.

 13

Example 1: Consider a set of relevant metrics M= {L,P,T}, where L is the latency, P is the
average power consumption, and T is the iteration period. Consider the goal g=[(L, 50),(P,
100),(L, 40),(P, 70), T]. In g, the constraint pair (L, 50) has higher priority than the constraint
pair (P, 100), which in turn has higher priority than the constraint pair (L, 40). The metric T
is the residual objective.

This definition of reconfiguration goals as prioritized lists with optional residual
objectives leads to a view of dynamic reconfiguration as a sequence of one-dimensional
optimization problems. This simplification is useful because run-time adaptation techniques
must be of relatively low complexity, and thus, one-dimensional optimization is a better
match. Additionally, it allows us to leverage existing libraries of single-dimensional
synthesis techniques, which are more abundant than multidimensional techniques. Third, it
provides an intuitive and unambiguous format for designers to prioritize multidimensional
application requirements. Note, however, that this formulation applies only to run-time
reconfiguration, and multi-dimensional optimization techniques, such as Strength-Pareto
Evolutionary Algorithm-based methods [10], can be used off-line in arbitrary ways to
compute caches of pre-computed configurations. Use of such caches will be discussed further
below.

For example, in Example 1, we initially have an unconstrained latency optimization
problem (since the first constraint involves latency). As we adapt the system configuration
with techniques that address this problem, we will in general improve the latency. Once the
latency improves to 50 time units, the current constraint is satisfied, and we switch to a
power-optimization problem subject to a constraint of L = 50. The optimization process may
continue in this manner until the last constraint is satisfied (in this case, P = 70), at which
point run-time adaptation stops (if there is no residual objective) or reaches a terminal mode
of optimizing the residual objective subject to all constraints in the constraint vector. This
mode then continues until the system shuts down or the application’s goal changes.

Mapping an application to a multiprocessor architecture includes defining a task-to-
processor mapping along with defining the configuration of the reconfigurable architecture.
In this paper, the scope of the word “configuration” is expanded to include also the mapping
of the application onto the reconfigurable architecture. Therefore, a configuration consists of
two components 1) task-to-processor mapping and 2) configuration of the architecture.
Henceforth, the word “configuration” is used in the above sense, unless stated otherwise. A
given application, goal, and resource set define an instance of the PCA mapping problem.
Input to the model is an instance that may change with time. We define the design space as
the set of all feasible combinations of an instance and a configuration. The solution space for
a feasible instance is the set of all feasible configurations for that instance. Latency,
throughput, average power and peak power are some of the commonly encountered metrics.
With many metrics of simultaneous relevance, the goal space is too vast to be fully explored
before run-time, and run-time adaptation of configurations is generally advantageous.

Figure 7 illustrates a general model for solving the PCA mapping algorithm with a
combination of off-line and on-line techniques. The main components of the model are the
off-line component, the configuration store (CS), and the on-line component. The off-line
component, whose objective is to pre-compute a set of efficient candidate mappings for
various run-time scenarios, can be constructed using existing methods for scheduling, system

 14

synthesis, and multi-objective optimization. The focus of this paper is thus on the on-line
refinement component and its interaction with the configuration store.

For a given instance, not every configuration is suitable as some configurations may
violate constraints or may not adequately address residual objectives. As the goal changes for
a given application, the system needs to derive a suitable adaptation of the run-time
configuration. Optimally solving this problem is undecidable in many contexts. Also,
reconfigurability of the architecture and the stochastic variance of execution times greatly
complicates the solution space consisting of all possible configurations for the input of a goal
and a given application. Since computing a suitable configuration is performed during the
execution of an application, one can not apply exhaustive or relatively sophisticated search
strategies as those techniques will take away excessive computational resources away from
the application itself. To address this trade-off (thoroughness of dynamic optimization vs.
resources drained from the application), our model of the PCA mapping problem also
accounts for the time spent in computing efficient adaptations of mappings at run-time on the
basis of feedback obtained from execution and identification of bottlenecks, and hence
always tries to move towards an optimal solution. This is taken care of in the on-line
refinement part of the model, which consists of low-complexity algorithms that find and
refine configurations for a given instance. It also consists of feedback units shown by the
“Identify bottlenecks” block in Figure 7 that takes feedback from the execution of the
configurations and modifies the configurations so as to better suit the active goal. The
OnlineStats unit in the on-line refinement part of the model stores short-term statistics that
can be used by on-line algorithms.

Figure 7. System-Level Reconfiguration Framework

 15

(3) Configuration Management Model
Our PCA system synthesis model is very adaptive in nature and hence is suitable for

applications with stochastic execution times and time-varying goals. A configuration store
serves as a repository of alternative configurations. A configuration store can be divided into
several sub-stores (sub-CSs), one for each relevant application. Each sub-CS has some
configurations stored in it, one for a specific combination of goal and resource set. In the
later part of this section, we assume that we are dealing with a fixed application and a fixed
resource set, unless stated otherwise. This does not detract from the generality of the ideas
developed later as they can be generalized to include various applications and resource sets
using the hierarchical model of configuration store explained above. Assuming a fixed
application and resource set, selecting the goals whose corresponding configurations should
be stored in the configuration store depends on various factors such as the size of the
configuration store; the optimality of the stored configuration; computational resources
drained from the application during execution by the on-line refinement algorithms; and the
expected or observed frequency of specific goals.

Notions of acceptability and cover emerge naturally from this concept of
configurations stores, and guide the construction and adaptation of the configuration store in
our model. For example, one can envision the reconfiguration process as selecting an
acceptable configuration, and gradually tightening the notion of acceptability to guide the on-
line refinement process.

In this section, we define an on-line configuration management framework called
CMF that defines how to choose an initial configuration for a particular instance, and how
the on-line adaptation for that configuration should proceed. We also formulate problems
related to storage of configurations in the configuration store. These problems and our
models to solve them provide fundamental analysis of the complexity of configuration
management and provide feasible, low-complexity solutions to this problem.

 16

A pseudocode outline of the CMF approach is shown in Figure 8. The objective is to
provide a framework that imposes minimal constraints on how reconfiguration is actually
performed, while providing systematic support for managing the reconfiguration process in
terms of configuration stores, performance constraints, and optimization objectives. CMF is a
meta-algorithm because specific details of the architecture, the application, and the on-line
adaptation algorithms are left unspecified, and can be customized based on the relevant
classes of applications and architectures. This meta-algorithm maintains a current objective
at all times, where the goal is always to improve the current objective without violating any
of the previously satisfied constraints. The function onLineAdaptation takes an objective
metric, a constraint value, and a configuration as inputs, and keeps refining the configuration
in an effort to continually improve its quality. This function would typically be called within
an enclosing loop that performs any system-dependent re-initialization and re-invokes the
function immediately after the previous invocation of the function terminates (observe that
the function terminates when the current goal is changed). Pseudocode for the related
functions is given in Figure 9.

Figure 8. Configuration Management Framework

 17

Before proceeding with discussion of our experiments with CMF, we first studied
some fundamental versions of the problems related to configuration management, their
complexity, and related aspects of them to well-studied problems. Two related problems
regarding the size of the configuration store are as follows.

P1. Find the minimum size configuration store and the goals that should be stored in
it such that all the relevant goals are covered.

P2. If one has a well-defined measure of “distance” between goals and the goal-pace
is a metric space [11] , then for a given fixed size configuration store, find the goals whose
configurations should be stored such that the sum of the distances of those goals that are not
present in the configuration store, from the distance-wise nearest goal present in the
configuration store, is minimum.

P1 and P2 can be viewed, respectively, in terms of the well-known problems of
minimum dominating sets and k-medians. To reduce P1 from the minimum dominating set
problem [12] , for every vertex in the dominating set problem, instantiate a goal, and for
every edge, instantiate a condition that the goal corresponding to the source vertex is
acceptable to the goal corresponding to the sink vertex. The problem P1 related to this set of
goals and the acceptability relation among goals is equivalent to the given minimum
dominating set problem instance. The vertices in the given minimum dominating set problem
instance, corresponding to the goals that should be stored in the configuration store (found by
solving P1) constitute a minimum dominating set for the given minimum dominating set
problem instance. This can be used to show that the problem P1 is NP-hard [3]. However, if
the acceptability relation is a partial order, then the minimum dominating set can be found in
polynomial-time by picking up all the vertices with no incoming edges in the graph of the
minimum dominating set problem [3][9][13]. This is in accordance with Theorem 1, and
further underscores the advantage of using acceptability relations that are partial orders. If the
associated distance function is defined between any two goals and the goal-space is a metric
space, then problem P2 can be modeled in terms of the k-median problem. For the simple

Figure 9. Functions promoteConstraint and demoteConstraint from Figure 8

 18

case of a two-dimensional goal space, a polynomial-time approximation algorithm with a 3-
approximation factor exists for the k-median problem.

Configuration management problems P1 and P2 can be viewed as extreme cases in
the sense that in one of them we want to cover all feasible goals without considering how
large the minimum size configuration store would be (P1), and in the other case, we have a
fixed size configuration store and we are trying to find out the maximum number of goals
that can be covered using that configuration store even though that number could be much
less than the total number of relevant goals (P2). A more elaborate formulation would be one
in which we have to pay extra cost for increasing the size of the configuration store, but we
would be gaining some additional service by that by being able to store more goals in the
configuration store. This way we can explore various trade-offs between the size of the
configuration store vs. the number of goals stored in a well-defined way. For the specific
case when a distance function is defined between any two goals and the goal-space is a
metric space, these trade-offs can be explored by modeling this problem as a facility-location
problem [3][11][13][14]. A polynomial-time algorithm with an approximation guarantee of
1.74 exists for the facility location problem [11].

(4) On-Line Adaptation
In this section, we focus on the metrics of throughput and power consumption, and

develop low-complexity, on-line strategies based on heuristics for throughput optimization
and power optimization as implementations of the function onLineAdaptation in Figure 8.
The objective is to demonstrate the efficacy of the CMF model, and show that it can produce
efficient tracking of time-varying application requirements.

The approach of taking feedback from the execution of the application makes these
on-line methods able to handle even applications with stochastic execution times that have
time-varying distributions, in addition to applications with fixed execution times, and
applications with stochastic attributes that have stationary distributions. In general, this on-
line refinement formulation can thus be viewed as an approach to tracking the dynamics of
the goal and the characteristics of the application.

To experiment with CMF, we used a simple heuristic based on load balancing [15] to
optimize throughput during online adaptation. Pseudocode for this heuristic is represented by
function adaptThroughput in Figure 10. In the pseudocode, moveTask is a function that
chooses n tasks from a maximally loaded processor in a configuration c, and randomly,
moves them to appropriate locations on a minimally loaded processor, and returns the
modified configuration. Randomization in choosing tasks from the maximally loaded
processor provides a low-complexity approach to increase the explored region of the design
space and to calibrate the configuration to dynamic application characteristics. The function
executeTr is a function that executes the application according to configuration c for a time
interval of length l, and returns the throughput of the application during that interval. The
value of l to use depends on the non-determinacy of the application.

 19

Generally, the more non-deterministic the application is, the longer it needs to be
executed to determine an accurate value of average throughput. The function
adaptThroughput returns a configuration that it deems most appropriate for throughput
maximization. Note that if moving any single task from the maximally loaded processor to
the minimally loaded processor does not improve performance then the heuristic chooses a
pair of tasks to be moved to another processor. This approach of progressively increasing the
number of tasks to be moved continues whenever all combinations for a particular number of
tasks have been exhausted. This approach thus attempts to make small low-complexity
changes first and if that does not improve performance, the approach gradually reaches
towards higher-complexity changes. The higher complexity changes are larger in number
than small, low-complexity changes, and help the system in escaping from local minima. In
our experiments, inter-processor communication (IPC) per time unit during the execution is
taken as an estimate for relative power consumption. Since IPC consumes relatively large
amounts of power, it is a reasonable approximation for comparing the power consumption
levels of alternative configurations on a homogeneous multiprocessor. To find a
configuration that reduces the power consumption, we use an approach (called adaptPower)
similar to the adaptThroughput approach used for throughput optimization, except that the
probability of a task on a maximally loaded processor being transferred to a minimally
loaded processor depends upon the IPC associated with that task. The higher the IPC
associated with a task, the higher its chances are of being transferred to another processor.

Figure 11 shows the performance of our implementation of CMF using the heuristics
for throughput optimization and power optimization based on various goals applied to several
DSP benchmarks, including fast Fourier transform, filter bank, music synthesis, and
measurement applications. The starting configuration that is refined is found by using
standard critical path scheduling. The critical path length is computed in terms of average
execution times of actors. The set of relevant metrics M for our experiments is M = {T, P},
where T denotes the average iteration period of the execution and P denotes the average
power consumption. In Figure 11, the column titled “Goal” represents the goal that is applied
to the application. Also, for a non-negative integer k, column vk denotes the value of a metric

Figure 10. Online Adaptation Approach

 20

of the best configuration found by the on-line adaptation scheme, after configurations have
been assessed by executing them for some time.

c. Stream Virtual Machine
In this section, we describe our implementation of a streaming model of execution

using a proposed standard streaming API, and evaluate the performance results for the
implementation running on the Raw processor [16]. In our streaming execution model, finite-
duration tasks running on programmable hardware computational cores read operands from
local on-chip memories, and write results back to local memories. We expect the access
patterns to local memory to be regular, e.g., sequential, which assists with getting
performance from the hardware cores. Data movement between the on-chip local memories
and off-chip memories is via explicit initiation of transfers. If there are multiple cores on the
chip, it is also possible to set up direct links to transfer sequences of data directly from core
to core.

Based on the hypothesis that this execution model is general and reflects the means
by which contemporary processors are programmed to achieve high performance when
executing programs with substantial amounts of data parallelism as are found in signal
processing, a standard way of describing computations in this model was developed. This is
the Stream Virtual Machine (SVM) framework [1][17]. The SVM framework consists of two
parts, a C-idiomatic API for expressing computations in this execution model, along with a
standard way for writing machine models (in an XML syntax) that describe hardware targets.
One use of the SVM framework is as an intermediary between two compilers; a High Level
Compiler (HLC) that is responsible for analyzing the input code and performing coarse grain
transformations of the application, such as extracting parallelism and coarse grain load
balancing, and a Low Level Compiler (LLC) that maps the tasks of the SVM to the hardware
computational cores, performing standard compiler transformations such as instruction
selection, register allocation, and instruction scheduling.

The output of the High Level Compiler is the application code after it has been
mapped into the streaming execution model as expressed in the SVM form. Like all

Figure 11. Experimental Results for CMF

 21

compilers, HLC uses an abstract machine model as a basis for the feasibility constraints and
cost functions that drive the transformations and optimization. A HLC has been developed
for SVM called R-Stream, and machine models and LLCs have been developed for Raw,
MONARCH [18][19], TRIPS [20][21], and Smart Memories [22][23]. These research
projects were conducted with the coordination of the Morphware Forum.

In this work, we experimented with the R-Stream 2.1 HLC and a low-level compiler
for the Raw architecture, as shown in Figure 12. We implemented the SVM LLC by using
Raw’s C compiler and implementing the rest of the SVM API as library. Then, we
implemented several stream applications: matrix multiplication, FIR filter banks, and Ground
Moving Target Indicator (GMTI) [24].

In our implementation of LLC, instead of building standalone compiler, we leveraged
the available gcc compiler tailored for Raw by using a library approach to SVM construction.
In this approach, we build a library for SVM APIs that is used for an SVM program.
Although this approach does not provide the full performance that a SVM compiler might
provide, it enabled us to assess the SVM framework in a short time period with minimal cost.
In our implementation, all SVM functions in the specification are implemented.

The library provides several functions to support the SVM APIs. One of them is
maintaining the kernel data structure. When a kernel is started, the kernel data structure is
passed to the secondary master. However, since the kernel start function is non-blocking, it
may return before the kernel starts. If the caller returns from a function in which the API is
called, the memory space for the kernel data structure can be freed, and, when the secondary
master is ready to execute the kernel, the kernel data structure is not available. To solve this
problem, our library maintains a copy of the kernel data structure in library memory space.

Another function that the library provides is handling of data buffering for streams
through dynamic networks. The dynamic network guarantees the order of data between two
tiles. However, if two sender tiles send data to a destination tile, the order of the data in the
receiver tile is not known at compile time. Thus, the library needs to identify the source of
data whenever a packet of data arrives. Also, if a data being received belongs to a stream that

Figure 12. HLC and LLC for Raw

Stream kernels

Raw

Raw C

Compiler
SVM

Library

R-Stream 2.1

LLC

HLC

SVM API Code

Machine
model

 22

is to be received later, then the data needs to be stored in a buffer. The library keeps buffers
for storing such data for proper operation of the dynamic network. We implemented two
kernels and one compact application: matrix multiplication, FIR bank, and GMTI using our
LLC/SVM implementation. Matrix multiplication, C = AB, calculates an output matrix C
from A and B, where A, B, and C are matrices. We implemented systolic matrix
multiplication. The A matrix data travels from left to right, and the B matrix data travels from
top to bottom in the Raw architecture. Each tile where A and B intersect computes matrix
multiplication using incoming data from A and B. The result data travels to the right. The
matrix sizes for A and B are 3 by 128 and 128 by 256, respectively.

The FIR bank is from the kernel benchmark suite [24] specified by Massachusetts
Institute of Technology Lincoln Laboratory for the PCA program. The FIR bank implements
a set of M FIR filters and each FIR filter m, m ∈ {0, 1, …, M-1}, has a set of impulse
response coefficients wm[k], k ∈ {0, … K-1}. It is mathematically specified as:

1,...,1,0for],[][][
1

0
−=−= ∑

−

=

Nikwkixiy
K

k
mmm

.
The filters are distributed over tiles such that each tile has M/T filters, where T is the

number of tiles. Each tile computes its own filters. Therefore, there is no communication
between tiles. The FIR is implemented in the frequency domain which is more efficient than
the time domain when data size is large. Therefore, FIR requires an FFT, a complex product,
and an IFFT operation. In this implementation, a few optimizations at the application level
were performed: i) the bit-reversal operations are eliminated by bit-reversing filter
coefficients and ii) using radix-4 FFT and radix-4 IFFT.

GMTI is a compact application that represents airborne radar applications used to
locate a target on the ground [24]. It consists of several stages: Time Delay and Equalization
(TDE), adaptive beamform, pulse compression, Doppler filter, space-time adaptive
processing, target detection, and target parameter estimation. TDE and pulse compression
stages are mainly convolution in frequency domain. Thus, they consist of FFT,
multiplication, and IFFT operations. Other stages mainly include matrix operations and FFT
operations.

To assess the SVM framework for Raw, we used matrix multiplication, FIR bank, and
GMTI. The matrix multiplication and FIR bank were hand-coded using the SVM API so that
the HLC is bypassed, which allowed us to isolate issues related to HLC. The code was then
compiled using the LLC that consists of our SVM library and the Raw C compiler. The code
was executed on the Raw hand-held board. GMTI is written in C-dialect code (“Gumdrop”
code) that provides hints to the HLC, and then is compiled with the HLC. The output code
from the HLC is expressed in the SVM API, is compiled with LLC, and then is executed on
the Raw processor.

The performance results for matrix multiplication are shown in Figure 3. The figure
shows the number of cycles used for computation of each multiplication-addition pair, i.e.,
the total number of execution cycles is divided by the number of multiplication-addition pair
in the matrix multiplication. On Raw, multiplication and addition each need one cycle to
execute. Thus, the lower bound of the number of cycles for a multiplication-addition pair is
two. Figure 13 shows the number of cycles for a multiplication-addition pair as a function of

 23

the number of words per communication. The number of words per communication is the
message size in words when a tile sends a message to a neighbor tile or a tile in the rightmost
column for result data sending.

The curve in Figure 13 named “SVM Library” shows the performance when a full
implementation of SVM API is used. The curve shows that the initial cost of the
communication using the library approach can be amortized over a long sequence of data.

In optimized communication for matrix multiplication in several ways. One way is
utilizing available multiple networks so that each network handles only one stream. Then, the
overhead for managing multiple streams in a network can be eliminated. Another
optimization was using hand-assembly code for critical section of the code. This allows us to
use the minimal number of instructions and optimal instruction scheduling. The last
optimization is using network ports as operands, a unique feature of Raw. The curve named
“Hand-optimization” in Figure 13 shows the performance when these optimizations were
applied. The most optimized results show that it takes only about 10% more overhead than
the theoretical lower bound, and the main reason for the overhead was due to the loop outside
of the deepest loop and software pipeline overhead.

The FIR bank was specified for two data sets in Polymorphous Computing
Architecture (PCA) kernel benchmark specification. The first set is a large data set: the
number of filters is 64, the number of input data is 4096, and the number of filter coefficients
is 128. The second data set is a small size: the number of filters is 32, number of input data is
1024, and the number of filter coefficients is 12.

We implemented the FIR bank manually using the SVM API. We performed several
optimizations including all three optimizations applied to matrix multiplication. An
additional optimization applied to the FIR bank implementation is using broadcast capability
of the Raw switch processor. In the broadcasting scheme, when a switch processor receives
data from a source, it duplicates the data and sends one copy to the compute processor and
sends another copy to a destination switch processor that performs the same operation.

The FIR bank is also optimized in several ways at the algorithmic level: using radix-4
FFT, elimination of bit-reversal, using overlap-save method, minimization of address
calculations using offsets, and preventing register spilling by restricting the number of
registers used. The implementation results are shown in Figure 14 and Figure 15. In Figure
14, UB denotes the upper bound of performance considering only useful floating point

1

10

100

1000

1 2 4 8 16 32 64 128
Number of words per communication

N
um

be
r o

f c
yc

le
s

SVM library
Hand-optimization
Lower bound

Figure 13. SVM Matrix Multiplication Results

 24

operations, not overhead operations. Since there are 16 tiles, each of which can compute one
floating point operation, the upper bound is 16 floating point operations per cycle.

IUB (implementation upper bound) denotes the upper bound when load and store
operations are considered as well as the number of floating point operations. Since the load
and store operations cannot be eliminated in our FIR bank implementation, the IUB is a
“practical” upper bound. The performance in Figure 14 is obtained when input and output
data are in cache so that time to access the external memory is not considered. Our results
show that the hand-optimized results are very close to the “practical” upper bound with only
about 10% overhead.

The result denoted as “compiler optimization” is obtained using the LLC with
algorithmic optimizations only. It shows about three times difference between hand-
optimized performance, which is mainly due to additional instructions and non-optimal
instruction schedules. Figure 15 shows the effect of accessing data from memory. It takes
about 16% additional cycles when data is accessed from memory. The additional cycles are
not significant since in the FFT computation, data re-use is high.

Figure 16 and Figure 17 show the results of our GMTI implementation. Figure 16
shows the execution schedule of each processor including a primary master, secondary
masters, and stream processors. Note that tile 0 is mapped to the primary master, one
secondary master, and one stream processor in time-shared mode. Other tiles are mapped to
one secondary master and one stream processor. The execution schedule shows the

parallelization achieved by the HLC.

0

2

4

6

8

10

12

14

16

Fl
oa

tin
g

po
in

t o
ps

 p
er

 c
yc

le UB

IUB

Hand Optimization

Compiler Optimization

Figure 14. SVM Throughput Results for FIR Bank

0

300000

600000

900000

Hand Optimization Compiler Optimization

N
um

be
r o

f c
yc

le
s

 Data from cache

Data from
memory

Figure 15. SVM Latency Results for FIR Bank

 25

The application is parallelized using up to 12 processors. Note that the HLC actually
can parallelize up to the maximum number of tiles on Raw processor (16). However, there
was a bug in the program execution on four of the 16 tiles that prevented the execution of 16-
tile code. Figure 16 shows that some portions of the application are not parallelized due to
the serial nature of those portions of the application. However, the available slots may be
utilized using software task pipelining. Utilization (expressed as fraction floating point
operations per cycle achieved compared to peak floating point performance) is about 0.5%.
The low utilization is due to the empty schedule slots shown in Figure 16, load and store
operations, and some redundant data movement operations that could be optimized away.

Since GMTI is a large application, optimizing the entire application for execution on
the SVM under this effort was not feasible. Therefore, we chose one stage, Time Delay and
Equalization (TDE), to focus on and performed optimizations for that stage. In Figure 17, the
x-axis shows several steps in TDE. In each step, the first bar marked as “R-Stream” shows
the performance of using the HLC and LLC with only algorithmic optimizations used. The
next bar, marked as “direct copy,” shows the performance when data is moved without using
SVM calls. Then, hand-assembly performance shows when critical sections of the code are
optimized using hand-assembly.

The ILB denotes the “practical” lower bound that includes load and store operations
as well as floating point operations. Note that the hand-assembled code performance is close
to the ILB.

The bar marked as “FLB” shows the lower bound when only floating point operations
are considered. The results show that the hand-optimized code obtains very close
performance to the “practical” lower bound that is expected to be obtained if the HLC and

LLC incorporate the optimization techniques we applied. The performance of the R-Stream
is also encouraging as the difference between the R-Stream and hand-optimization code is

Figure 16. GMTI Execution Schedule

* SM: secondary master
 SP: stream processor
 Bars represent kernel executions or primary master executions

PM
SM/SP 0
SM/SP 1
SM/SP 2
SM/SP 3
SM/SP 4
SM/SP 5
SM/SP 6
SM/SP 7
SM/SP 8
SM/SP 9
SM/SP 10
SM/SP 11
SM/SP 12

Tile 0

Tile 1
Tile 2
Tile 3
Tile 4
Tile 5
Tile 6
Tile 7
Tile 8
Tile 9
Tile 10
Tile 11
Tile 12

10 20 30
Execution cycles (Million cycles)

 26

only about three times for major computational parts even though R-Stream is still in
research development.

The results also reveal where the current tool chain needs improvement. One of the
improvements needed is better parallelization capability. Although the current HLC
parallelizes up to the maximum number of processors, in some stages in GMTI, it fails to
parallelize because of memory constraints. We expect the HLC to parallelize these sections
as better code analysis capability is developed.

d. Application Performance
The Integrated Radar Tracker (IRT) is the primary compact application specified for

performance evaluation for the PCA program. Within IRT, most of the computation is in the
Ground Moving Target Indicator (GMTI) [24]. GMTI, for which the block diagram is shown
in Figure 18, contains many algorithms, divided into nine stages: subband analysis, time
delay and equalization, adaptive beamforming, pulse compression, Doppler filter, space-time
adaptive processing (STAP), subband synthesis, target detection, and target parameter
estimation. The AMP team mapped GMTI to the Raw architecture as a tool to understand the
issues that arise in mapping a full-scale application to a polymorphous computing
architecture. We mapped GMTI to a 64-tile (4-chip) Raw system because 64 tiles is enough
to expose larger scale application issues, including programmability and performance
scalability and to run a realistically-sized application, and because it allows us to simulate
individual stages in a reasonable amount of time.

0

50000

100000

150000

200000

250000

300000

350000

move to
local

kernel
call

copy zero fft mul ifft back move to
global

R-Stream
Direct copy

Hand assembly

ILB

FLB

Figure 17. GMTI Cycle Breakdown

 27

The first step in mapping GMTI to Raw was to identify parallelism, which is
necessary to map any application to a parallel architecture. Since the application was
specified as a pipelined application with task-level parallelism, we chose to exploit that task-
level parallelism first, since each task can be executed independently. However, in order to
achieve the performance goals of the GMTI specification, we needed to extract additional
parallelism from individual stages. The left part of Figure 19 shows the tasks divided into
stages, with input data coming from the memory on top, which shows our initial coarse task-
level parallelism. The right side of Figure 19 shows the GMTI parameters within each stage
that provide parallelism that can be exploited for further performance gains.

Figure 18. GMTI Block Diagram

 28

Next, we used the computation requirements of each stage to determine how many
Raw tiles needed to be dedicated to processing at each stage. The number of tiles needed for
each stage is determined by the processing and memory bandwidth requirements for each
stage. We used empirical data to determine assumptions about how many operations per
second each tile could deliver. Figure 20 shows the number of tiles that were needed for each
stage of the GMTI application. The tiles were then mapped to rows of an 8x8-tile Raw
system, so that data could flow between tasks without interference from other tasks.

Running the full 64-tile GMTI application on the Raw simulator was not feasible.

However, we did run separate simulations of the inter-stage communication and computation
for each stage. We exploited data parallelism within each stage, so the communication within
each stage is negligible. The inter-stage communication did not take more than 20% of the
computation cycles for any stage, so we focused on application performance within each tile.

Doppler, beamsDet/PE

Dopper, clutter-
nulled beams

SS
DopplerSTAP
Subband, beamDF

Subband, PRIAB/PC

PRI, channel,
subband

SA/TDE

ParallelismStage

Doppler, beamsDet/PE

Dopper, clutter-
nulled beams

SS
DopplerSTAP
Subband, beamDF

Subband, PRIAB/PC

PRI, channel,
subband

SA/TDE

ParallelismStage
Subband Analysis

Time Delay and Equalization

Adaptive Beamforming
Pulse Compression

Doppler Filtering

STAP

Subband Synthesis

Detection
Parameter Estimation

M M M…

Subband Analysis
Time Delay and Equalization

Adaptive Beamforming
Pulse Compression

Doppler Filtering

STAP

Subband Synthesis

Detection
Parameter Estimation

MM MM MM…

Figure 19. GMTI Parallelism

FLOPs/second RAW Tiles RAW Chips System Rows
subband analysis 8.30E+08 22 2 1
time delay & equ 3.52E+08 10 1 1
ABF 1.17E+08 3 1 1
PC 3.52E+08 10 1 1
doppler filtering 1.44E+08 4 1 1
STAP 1.65E+08 5 1 1
subband synthesis 9.35E+07 3 1 1
detection 9.71E+06 1 1 1
parameter est 0.00E+00 0 0 0
subtotal 2.06E+09 58 4 2

GMTI

CPI length (s) 0.048CPI length (s) 0.048

PRF (Hz) 1,000
transmit duty factor 10%

sampling frequency (Hz) 500,000
number of channels 8

number of PRIs 48
number of PRI staggers 2

number of subbands 2
number of post-ABF beams 4

number of post-STAP beams 2
number of range gates 450

number of doppler bins 47

PRF (Hz) 1,000
transmit duty factor 10%

sampling frequency (Hz) 500,000
number of channels 8

number of PRIs 48
number of PRI staggers 2

number of subbands 2
number of post-ABF beams 4

number of post-STAP beams 2
number of range gates 450

number of doppler bins 47

Figure 20. GMTI Computation Balance

 29

Figure 22 shows single-tile performance on Raw, measured in cycles, compared to an x86
architecture (represented by an Intel Pentium III processor). Since each tile of Raw is a
single-issue core with one floating point unit, the fact that single-tile performance is roughly
equivalent to a commercial x86 processor is encouraging. This means that the complexity of
the x86 architecture devoted to extracting instruction-level parallelism is not gaining much
performance, and the silicon area on the processor is better devoted to additional tiles
(processors). To validate the simulation results, we implemented a 4x4 version of narrow-
band GMTI and found that the simulation cycles counts were within less than 2% of the
actual cycle counts measured on hardware.

e. Coherent Sidelobe Canceller and DARPATech Demonstrations
The AMP team demonstrated compatibility of PCA architectures with existing DoD

software standards by implementing advanced embedded DoD signal processing algorithms,
such as radar Pulse Compression, on multiple Polymorphous Computing Architectures
(PCAs) using the VSIPL industry standard signal processing API. Critical embedded, high
performance radar processing algorithms for shipboard ballistic missile defense have been

Subband/TDE, 32 Tiles

ABF, 4 Tiles

Pulse Compression / Doppler Filtering, 16 Tiles

STAP, 6 Tiles

Subband Synthesis, 4 Tiles

Detection / Estimation, 2 Tiles

Subband/TDE, 32 Tiles

ABF, 4 Tiles

Pulse Compression / Doppler Filtering, 16 Tiles

STAP, 6 Tiles

Subband Synthesis, 4 Tiles

Detection / Estimation, 2 Tiles

Figure 21. GMTI Resource Mapping

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

160,000,000

Subba
nd

TDE
ABF

Pulse
 C

omp

Doppler

C
yc

le
s

or
 F

LO
Ps

Theoretical FLOPs
Matlab FLOPs
x86 Cycles
Raw Cycles

Figure 22. GMTI Single-Tile Raw Performance

 30

implemented at Lockheed Martin MS2 in COTS PowerPC architectures using equipment
from various vendors, including CSPI and Mercury Computers, utilizing standard API
libraries such as VSIPL and MPI. Of particular interest is whether we can port these
embedded applications from conventional COTS architectures for execution on various
embedded PCA morphable processor architectures. This successful demonstration of
application portability is key to DoD acceptance of non-conventional computing
architectures, such as PCA, for embedded tactical processing applications. The AMP team
successfully demonstrated:

• A critical embedded DoD signal processing benchmark (frequency domain radar
pulse compression) using industry standard VSIPL, executing on Raw and TRIPS

• A successful morph from C-VSIPL Streaming Pulse Compression to a C-VSIPL
threaded tracking function, on an actual Raw processor and a TRIPS simulator

• A successful port of the Raw C-VSIPL streaming pulse compression code and C-
VSIPL threaded track processing code to the TRIPS architecture

• A Java-based GUI to display the input data, output data and PCA processor status
while running the C VSIPL benchmarks
By providing industry standard APIs, such as VSIPL and MPI, for new PCA

architectures, we have demonstrated legacy applications implemented in new, morphable
embedded PCA hardware and middleware architectures with industry standard C and C++
programming methodology.

Input Data Output DataInput Data Output Data
Tracker Data

FFT FFT FFT FFT

FFT FFT FFT FFT

FFT FFT FFT FFT

FFT FFT FFT FFT

Streaming

CMPY CMPY CMPY CMPY

CMPY CMPY CMPY CMPY

CMPY CMPY CMPY CMPY

CMPY CMPY CMPY CMPY

Streaming

IFFT IFFT IFFT IFFT

IFFT IFFT IFFT IFFT

IFFT IFFT IFFT IFFT

IFFT IFFT IFFT IFFT

Streaming

Track Track Track Track

Track Track Track Track

Track Track Track Track

Track Track Track Track

Threaded

Display Display

Input
Data

Application

C Code (Pulse
Compression & Tracker)

VSIPL API

Optimized Raw Assembly
(FFT, CMPY, IFFT)

Raw Hardware
Figure 23. Raw VSIPL Demonstration

 31

f. Comparison to Data-Intensive Architectures
In this section, we compare the Raw PCA processor to architectures developed under

the Data Intensive Systems program. Performance of these kernels is obtained by using
cycle-accurate simulators provided by the VIRAM [25], Imagine [26][27], and Raw teams
[28].

For comparison purposes, actual measurements of performance were taken using a
single node of a 1 GHz PowerPC G4-based system (Apple PowerMac G4 [29]). An
implementation using AltiVec technology was used for speedup comparisons. The Apple cc
compiler was used with timing done using the MacOS X system call mach_absolute_time().
We manually inserted Altivec vector instructions.

Figure 25 summarizes key parameters of each processor and the performance results.
Note that the PowerPC is a highly optimized chip in performance implemented with custom
logic. The other processors are research chips implemented using standard cells and very
small design teams. Thus, if the same level of design effort were applied to these research
architectures, we would expect much higher clock rates and density to be achieved. Figure 26
shows the speedup in terms of cycles and execution time.

Input Data Output DataInput Data Output Data
Tracker Data

Display

Input
Data

Application

C Code (Pulse
Compression & Tracker)

VSIPL API

Optimized Raw Assembly
(FFT, CMPY, IFFT)

Raw Hardware

to Tracker

Trips Simulator

Streaming

FFT
Streaming

CMPY
Streaming

IFFT

Figure 24. TRIPS VSIPL Demonstration

4.6414.43.25Peak
GFLOPS

1648164# of ALUs

3003002001000Clock (MHz)

RawImagineVIRAMPPC
G4

4.6414.43.25Peak
GFLOPS

1648164# of ALUs

3003002001000Clock (MHz)

RawImagineVIRAMPPC
G4

19357146Raw

871441,439Imagine

35424554VIRAM

3644,93129,288Altivec

73029,01334,250 PPC

Beam
Steering

CSLCCorner
Turn

19357146Raw

871441,439Imagine

35424554VIRAM

3644,93129,288Altivec

73029,01334,250 PPC

Beam
Steering

CSLCCorner
Turn

Figure 25. Architecture Parameters and Performance Summary

 32

All three architectures provided speedups of more than 20 compared with a PowerPC
system in terms of number of cycles on the corner turn benchmark. Corner turn performance
is primarily a measure of memory bandwidth, which is not a direct property of an
architecture, but rather a function of the number of pins in the package. However, the corner
turn does demonstrate an architecture’s ability to leverage memory bandwidth that does exist.
Since VIRAM has on-chip DRAM, the kernel measures on-chip bandwidth. On the Imagine
and Raw architectures, we stress off-chip memory bandwidth.

The performance of corner turn on VIRAM is about half of what would have been
expected from peak memory bandwidth. About 21% of the total cycles are overhead due to
DRAM pre-charge cycles (which would be mostly hidden with sequential accesses) and
translation look-aside buffer misses, and 24% are due to a limitation in strided load
performance imposed by the number of address generators.

On Imagine, we assume the memory clock is the same frequency as the processor
clock. Imagine has two address generators that provide two words per clock cycle. Note that
the number of address generators is a processor implementation choice and is not a limitation
of the stream architecture. Since the goal of the Imagine project was to demonstrate how
memory traffic could be reduced, the Imagine team chose not to implement a high-bandwidth
memory interface. If a network port were used to transfer data between SRF and an external
memory connected to network port for corner turn, the performance would be the same since
the network port has a peak performance of two words per cycle.

87% of the cycles in the Imagine corner turn are due to memory transfers, which
operate close to the maximum theoretical performance. The remaining 13% of the execution
cycles are due to non-overlapped cluster instructions. Conceptually, the kernel instructions
should be fully overlapped with memory accesses, but a limitation induced by the stream
descriptor registers prevented full software pipelining in our implementation.

The Raw chip implementation actually provides enough main memory bandwidth that
it is not the performance limiter for our corner turn implementation. Load/store issue rates
and local memory bandwidth limit performance. An aggregate of 16 instructions per cycle
are executed on the Raw compute tiles, and the static network and DRAM ports are not a
bottleneck. The performance we achieved is nearly identical to the maximum performance
predicted by the instruction issue rate. Memory latency is fully hidden (except for negligible
start-up costs).

1

10

100

1000

Corner Turn CSLC Beam Steering

VIRAM

Imagine

Raw

1

10

100

Corner Turn CSLC Beam Steering

VIRAM

Imagine

Raw

Figure 26. Speedup Relative to PowerPC Measured by Cycles (Left) and Time (Right)

 33

CSLC consists primarily of FFTs and matrix-vector multiplication. Since the FFT
length is 128, the working set fits into local memory, the performance of the CSLC depends
primarily on ALU performance for Imagine and Raw. Our VIRAM CSLC implementation
takes about 3.6 times longer than what is predicted by peak performance. The first factor
reducing performance is overhead instructions (those instructions that do not directly move
input or output data or perform necessary floating point operations). Overhead instructions
are needed to perform the FFT shuffles and increase the number of cycles by a factor of 1.67.
The second factor that reduces FFT performance is ALU utilization. Since the second vector
arithmetic unit in VIRAM cannot execute vector floating point instructions, performance on
the FFT is reduced by a factor of 1.52. Finally, memory latency and vector startup costs
increase performance by a factor of 1.41.

The CSLC implementations on Imagine and Raw use the radix-2 FFT. On Raw, we
used radix-2 to avoid register spilling encountered in the radix-4 FFT. On Imagine, the radix-
4 FFT provides better performance (about 34%), but a complete CSLC implementation was
not available and was beyond the scope of the AMP project. The number of operations
(including loads and stores) in the radix-2 FFT is about 1.5 the number in the radix-4 FFT.
So care should be taken when comparing the performance of the CSLC on Raw and Imagine
with CSLC performance on other architectures.

Imagine has the best performance of the three architectures on CSLC. This is because
it is a computation-intensive kernel for which the working sets fit in the stream register files.
Although the data access patterns for FFT are challenging for any architecture, the streaming
execution model of Imagine is able to reduce memory operations and Imagine functions as
intended on this kernel. Overall, performance achieved on CSLC on Imagine is about 39% of
what is predicted by peak performance. While this is much lower than those achieved for
many media benchmark kernels, it still allows Imagine to perform about 16 useful operations
per cycle; much better than can be achieved on today’s traditional superscalar architectures.
Performance is reduced by 35% because inter-cluster communication is used to perform
parallel FFTs. An alternative implementation, which was beyond the scope of this study,
would execute independent FFTs in parallel to eliminate inter-cluster communication
overhead.

For the FFT kernel, ALU utilization (as measured by minimum FFT computations /
total ALU cycles available) is 34.0%. If we exclude the divider, which is not useful for the
FFT, then the utilization is 40.8%. Note that the utilization is on the lower side of the more
than 40% obtained in other processing intensive applications. The reason for the relatively
low utilization is that the small size of the FFT reduces the amount of software pipelining and
increases start-up overheads.

On Raw, we implemented a data parallel version of CSLC. The local memory on Raw
successfully caches the working sets, and less than 10% of the execution time is spent on
memory stalls. Note that most of this stalling could have been eliminated by implementing a
streaming DMA transfer to the local memory that is overlapped with the computation.

One problem with our data parallel implementation of CSLC on Raw was load
balancing. The CSLC is easily parallelized for 16 tiles. However, since the number of data
sets is 73, which is not a multiple of the number of tiles, some tiles processed five sets while
others processed four sets. About 8% of CPU cycles are idle due to load balancing. However,

 34

the number of sets in a real environment is not fixed at 73. In a real implementation, the input
data sets would arrive continuously. Therefore, it is reasonable to assume that Raw could
have nearly perfect load balancing in a real implementation. Thus, we report the performance
numbers for CSLC on Raw based on an extrapolation that assumes perfect load balancing.

Raw achieves about 31.4% of the peak performance on CSLC. About 26% of the
cycles on Raw are consumed by load and store instructions. Cache stall takes 7.4% of the
total cycles. The remaining cycles are consumed by address and index calculations and loop
overhead instructions. If FFT is implemented using the stream interface that uses the static
network, cache miss stalls are hidden, and load and store operations are not needed. A
primitive implementation result suggests about 70% FFT performance improvement.

Beam steering has few memory accesses (two reads and one write) and computations
(five additions and one shift) per output data. On VIRAM, the lower bound of the
computation time is 56% of the simulation time. The difference between the expected time
and simulation cycles (15,412) comes from waiting for the results from previous vector
operations and the cycles needed to initialize the vector operations.

On Imagine, the computations and memory accesses for beam steering are overlapped.
The performance is limited by memory bandwidth due to the relatively low number of
computation per memory access. The load and store operations take 89% of the simulation
time. The remaining 11% of execution time is due to the software pipeline prologue. In an
actual signal processing pipeline, the beam steering kernel would stream its inputs from the
proceeding kernel in the application (e.g., a poly-phase filter bank) and stream its outputs to
the following kernel (e.g., per-beam equalization). In such a pipeline the performance of
beam steering will not be limited by memory bandwidth, as in the case of this isolated kernel,
but rather will be limited by arithmetic performance. On such a streaming application
Imagine is expected to achieve a high fraction of its peak performance. If table values were
read from the stream register file rather than memory on our kernel, performance would be
increased by a factor of about two. The performance of a beam steering algorithm with more
computation per data (which is a realistic assumption) could be much higher.

On Raw, we used the static network to stream data from memory while hiding
memory latency. In this implementation, loads and stores are not necessary and ALU
utilization is very high. It attains 96.6% of the peak performance. The Raw beam steering
implementation has the best performance of the three architectures because of the
combination of memory bandwidth and high ALU utilization.

VIRAM’s primary advantage comes from the high bandwidth between the vector
units and DRAM without paying the cost (in terms of pins and power) that are required to
achieve high bandwidth between chips. VIRAM is especially suitable for vectorizable
applications that can utilize the high bandwidth interface and that are small enough to fit in
the on-chip memory. VIRAM outperformed the G4 Altivec by more than a factor of 10 on all
three of our kernels and showed especially good performance on the kernels that emphasize
memory bandwidth. For embedded applications with reasonably sized data sets, the VIRAM
can be used as a one-chip system. If the application size is larger than the on-chip DRAM,
the data needs to come from off-chip memory and VIRAM would lose much of its advantage.

Imagine’s high peak performance can be utilized in streaming applications where
main memory accesses can be avoided or minimized. The CSLC kernel demonstrates that

 35

even when the Imagine ALUs are not fully utilized, performance can be quite high,
especially when compared to a commercial microprocessor like the G4 Altivec. Imagine’s
stream-based architecture is designed for scalability and power efficiency and the Imagine
architecture has the highest peak performance of the architectures in this study.

Raw also performs best on streaming applications since load and store operations can
be eliminated and the static networks provide tremendous on-chip bandwidth. The kernels
used in this study do not fully exploit this mode of execution. But we have shown that the tile
structure of Raw can be used to utilize the memory bandwidth available from the external
ports of Raw. The tile structure also provides flexible support for MIMD and ILP
applications, which is the primary goal of polymorphous computing architectures.

g. Knowledge Aided Processing
A recent thrust of algorithm enhancements in radar processing centers around a theme

of augmenting traditional digital signal processing algorithms (DSP), such as space-time-
adaptive-processing (STAP) and constant-false-alarm-rate (CFAR), with better knowledge-
based (KB) situational information, thus enabling them to make better use of the available
real-time radar returns to improve signal-to-interference and noise-ratio (SINR). While the
core traditional STAP and CFAR algorithms remain largely untouched, there is substantial
pre-processing and co-processing of different data sources, such as global positioning system
(GPS), Digital Elevation Maps (DEMs), Land Use Land Cover (LULC) maps, Satellite
Imaging, Synthetic Aperture Radar maps (SAR), and previously collected radar data that can
be used to improve the accuracy of the traditional radar algorithms. This mixing between the
KB and traditional radar signal processing requires, however, different types of computations
not usually seen in traditional signal processing radar architectures. This pre-/co-processing
must be characterized in terms of crucial hardware and software design constraints for
computing architectures.

While the use of knowledge-based and traditional signal processing algorithms is not
expected to drastically increase the total number of floating-point-operations per second [5],
the micro-architecture hardware control logic required to implement these knowledge-based
representations and optimally blend the traditional radar signal processing with KB
processing, imposes noticeable constraints pertaining not only to processing, but also to the
embedded architectural parameters, such as memory latency, I/O throughput, threaded
performance, data locality, etc. These new radar performance requirements have strong
implications on the underlying hardware architecture, requiring schemes capable of adapting
in real-time with the agile KB and DSP algorithms that are necessary to fully realize the
expected gains in radar performance.

Traditional GMTI and SAR processing has yielded highly optimized, static ASIC
computing architectures such as parallel systolic arrays capable of achieving up to tera-
FLOPS performance in radar kernels such as QR factorization. These architectures are
dependent on pre-defined computational schema, where the number of streaming input
channels, data throughput, and memory access rates are constant. Adding intelligent signal
and KB processing techniques to this system may provide cleaner input data to feed such a
systolic processor, however it creates dynamic arrival latency. In KB processing, filter
weights selected by the in-situ environment reside in large databases, which depending on the

 36

effectiveness of the memory hierarchy can result in nanoseconds to milliseconds worth of
delays. For the throughput rates required in modern GMTI/SAR radar systems, this will
violate real-time constraints, resulting in dropped data and performance degradation. This
processor versus memory speed gap issue is becoming more critical, as traditional
microprocessor performance has been doubling every 18-24 months, while DRAM (main
memory) latency has only been improving 7% per year [30].

The first step of this study was to analyze the total memory, processing throughput,
and memory bandwidth required in order to mix the execution of conventional signal
processing with knowledge-aided algorithm data accesses. These specifications are driven by
what type of database is being referenced, the database access rate, and how much pre-
processing needs to be performed on the a priori data. We considered three types of
databases: 1) a database of pre-computed weights for each cell the platform is located in 2) a
database of intermediate data, such as eigenvectors, for each platform cell, and 3) a database
of raw data such as SAR or LULC. Using reasonable radar parameters [31] and assuming a
database large enough for a typical mission of 100,000 sq km, we found range of total
database sizes assuming fine resolution, typical of SAR at 2.5 m x 2.5 m, and coarse
resolution, typical of LULC at 30 m x 30 m. This analysis showed that storing pre-computed
weights for each cell is infeasible as it requires 10’s of Peta Bytes of storage. The second
scenario is more realistic as it requires 10’s of Tera Bytes of storage, but is still unwieldy.
The last scenario requires only about 100 Giga Bytes, or a single rack. So from a total
memory standpoint, the third scenario, storing the original databases, seems the most
desirable. Considering that we have only analyzed 2 dimensional a priori data, and 3
dimensional databases, such as Digital Elevation Maps (DEM), will increase each scenario’s
memory requirements by at least another order of magnitude, strengthens the case for storing
the raw databases. Another appealing aspect of storing the raw databases is that it simplifies
the logistics of fielding such a system as new databases can be uploaded into the architecture
immediately without the need for intermediate processing. The trade-off is that a significant
amount of on-platform processing must now be subsumed in order to process the filter
weights in real-time.

Now that the database type has been determined, we determined the processing
throughput and memory bandwidth requirements. The weights for the combined STAP with
Knowledge-Aided Pre-Whitening algorithm are defined [32] as:

()
()

()
() v1QxxRHv

v1QxxR

v1ILβcRdβxxRHv

v1ILβcRdβxxR
w −

+

−
+

=−
++

−
++

= (1)

where Rxx is the input data covariance matrix, Rc is the a priori knowledge-based covariance
matrix, with loading factor βd, βlI is a standard diagonal loading term and v is the steering
vector. To reduce the number of compute operations in the system, this calculation is
typically performed in the data domain, where the input data x is defined as

H
xx xxR = (2)

For the Knowledge-Aided case, this now becomes

 37

[] QR
C
x

CxxxR xxH

H
H''

CL +=⎥
⎦

⎤
⎢
⎣

⎡
== (3)

where HCCQ = is the Cholesky decomposition of Q. In this manner, the Knowledge-Aided
processing can be seen as formulating Q and computing its Cholesky C, where C is then
passed on to a traditional systolic array STAP processor much as is done with diagonal
loading terms currently.

In summary, the Knowledge-Aided Pre-filtering Architecture’s tasks are to 1) access
the relevant database locations, 2) formulate Q by finding the desired eigenvectors in the
current database set, and 3) compute the Cholesky of Q. These tasks are to be performed in
real-time without adding non-deterministic latency to the system, as these loading factors
must be synchronized with the correct Coherent Pulse Interval (CPI) of radar data. The
computational kernels that comprise these tasks are multiple matrix-matrix multiplications,
eigenvalue decomposition (for this study, SVD was used, but as Knowledge-Aided
algorithms mature, other methods may be found suitable), and Cholesky decomposition. In
order to bound the latency and real-time requirements, we assume that computations were to
be completed in one CPI. Using expected radar parameters [31], this leads to a full Degree of
Freedom (DoF) computational throughput of 215 GFLOPS, when N = 352 are the DoF and
M = 1800 is the database array length.

It should be noted that 215 GFLOPS constitutes one thread or “guess” of the a priori
contributing factors involved and that it may be desirable to execute several threads or
guesses in parallel utilizing different types, or mixes of databases and then select the best fit.
Such a multi-threaded system will increase the throughput requirements linearly. Also from
this data set, we can derive a memory bandwidth specification. In this scenario a matrix of
352 x 1800 complex 32 bit values are used to formulate Q every CPI, resulting in a system
memory bandwidth of 316.8 MB/s.

Next, we provide a brief overview of the approaches used to map the Knowledge-
Aided Pre-Whitening algorithm to each of these architectures. As the kernels can be broken
into two types, data independent (matrix multiply) and data dependant (SVD, Cholesky), we
focused on mapping one kernel of each type, matrix multiply and Cholesky.

The Imagine matrix multiplication kernel uses a blocked version in which the input
matrix is partitioned into eight by L size blocks. Two blocks are read by the ALU clusters.
First, each cluster reads the data in the left-most input matrix column. Then, the data in the
first ALU cluster is sent to all other clusters. Next each cluster performs the complex
multiplication on its own data and the received data. Then, the data in the second ALU
cluster is sent to all clusters and complex multiplication is performed. This is repeated until
all data in the eight clusters are sent to other clusters and computed. After all the
communication pairings are exhausted, this loop is continued on each column of input data.
This approach makes full utilization of the high-bandwidth inter-alu cluster network, without
having to access deeper memory.

Since the number of the multiplications and additions are the same for complex matrix
multiplication, the two multipliers become a bottleneck. Thus, two multiplications and two
additions are performed per cycle in each cluster. Software pipelining is used to overlap these
computations with the data transfers between memory and the SRF.

 38

In this implementation, the maximum value of L that can be processed without losing
performance was 128. When the size is larger than this, the data does not fit in the SRF,
which results in significant performance degradation. The number of columns of the data in
this application is larger than this, i.e., 352 and 1800. Thus, the matrices need to be
partitioned into many 128-sized blocks to obtain optimal performance. This causes interim
data to be used, increasing the data transfers.

On Imagine, the optimal algorithm for Cholesky is a blocked out-of-core algorithm [33].
This algorithm minimizes the amount of data transferred between memory and disk. In
mapping to the Imagine architecture, the same technique is used to reduce the amount of data
transferred between memory and the SRF. Furthermore, the algorithm is tweaked to make
best use of the SRF and ALU cluster sizes maximizing the advantage of stream processing.

The input matrix is partitioned into 8 by 8 blocks to correspond to the number of ALU
clusters. The matrix is represented as (4) and the algorithm steps are as follows:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

222120

1110

00

*
**

AAL
AL

L
A (4)

1. For all diagonal blocks from left-top to right-bottom
2. Read A11
3. A11← A11 - L10 * L10

T
4. A11←L11 = chol(A11)
5. Write A11
6. A21← (A21 – L20 L10

T) L11
-T

In (4), 11A is an 8 by 8 block. At first, A11 is the left-top block, and L00, L10, and L20 are null.
In the next iteration, A11 is the second left-top diagonal block, L00, L10, and L20 are 8 by 8, 8
by 8, and (N-16) by 8 blocks, respectively, where N is the number of rows of A. Most of the
computation is in step 6 which is a blocked matrix multiplication. Thus, the same method as
in the matrix multiplication is used here.

In our approach on Raw, two key concepts are used to fully leverage the Raw
architecture [34]. First, the tile grid is viewed as a decoupled systolic array (DSA) where
typically the border tiles are used to store and load data to memory and feed the interior tiles,
which are used to perform the compute processing. This has the effect of removing loads and
stores from the critical computation path of an algorithm. This approach is especially
attractive to KASSPER architectures, because it allows direct scheduling and control of the
database memory. The second key concept is to program a Raw chip in the context of
streams. In this approach the interior computational tiles utilize the register-mapped high
bandwidth tile interconnect to full advantage by performing ALU operations where an input
register may be from an input port of the network and the output destination may be an
output port. In this manner a typical serial RISC program will be pipelined and divided over
several tiles. It is important to note that as we consider a multi-processor environment, or
Moore’s Law enables more tiles per chip, this approach becomes more efficient as the
number of processing tiles increases by N2 while the number of memory tiles increases by N.

For a matrix multiplication of C = AB, the memory tiles arrange the data streaming
into the processing tiles such that the rows of matrix A are aligned along the left hand tiles

 39

and are passed from left to right, while the columns of B are aligned along the top tiles and
are passed from top to bottom. The processing tiles receive these input data on their network
ports and compute the partial product. The input data is then passed along to the neighboring
tiles, while the partial product is accumulated.

The Cholesky implementation on Raw follows the same algorithm that was used for
Imagine, [33] coupled with the streaming approach outlined in the matrix multiplication.
Here, a similar matrix multiplication approach is utilized for steps 3 and 6 of the algorithm.
Step 4 consists of the standard Cholesky formula [35] of taking the square root of the
diagonal element, dividing the remaining elements in the row by this value, and performing
some vector multiplications to update the block. This step can also be implemented in the
streaming method, however here Raw experiences some inefficiencies as the square root
function is implemented in software and has a relatively large latency.

The results of the Knowledge Aided Pre-Whitening algorithm were obtained by using
cycle-accurate simulators provided by the Imagine and Raw teams. For comparison purposes,
actual measurements of performance were taken using a single node of a 500 MHz PowerPC
G4 based system. Table 3 summarizes the results.

Kernel PPC G4 Imagine Raw

Clutter Covariance
Formation

0.680 sec 0.186 sec 0.372 sec

SVD 7.05 sec 1.91 sec 1.77 sec
Rknown Formation 0.159 sec 0.0364 sec 0.0209 sec
Cholesky
Decomposition

0.123 sec 0.00953 sec 0.0316 sec

Total 8.01 sec 2.14 sec 2.19 sec

Table 3. KASSPER Performance Results

The experimental processors each take different approaches, but for this application
the results are similar. Imagine provides a 3.8x throughput increase and Raw provides a 3.7x
throughput increase over the PowerPC. In large part, this is because the PowerPC can operate
near its peak throughput of 4 GFlops/sec using Multiply-Accumulate instructions on matrix
multiplication type kernels, which constitute over 54% of the floating point operations in this
application. For these data independent kernels, clutter covariance formation and Rknown
formation, Imagine and Raw achieve a 3.8x and 2.1x speedup, respectively. It is important to
note that the reason for Raw’s lower performance is that it does not have a Multiply-
Accumulate instruction. This simple improvement would nearly double the performance of
Raw.

For irregular, data-dependent kernels like SVD and Cholesky, the experimental
processors perform better. For Cholesky, Imagine and Raw achieve a 12.9x and 3.9x
improvement over PowerPC respectively. For SVD, Imagine achieves a 3.7x speedup and
Raw achieves a 4.0x speedup. In these kernels, Imagine benefits from being able to keep
large blocks of inter-dependant data readily available in its SRF. Raw increases its
performance by pipelining serial computations over several tiles, keeping all its ALUs busy
each clock cycle. However, the PowerPC has idle Altivec ALUs while calculating data
dependent operations.

 40

The KASSPER architecture is a system-level architecture. Though single-chip
performance for these experimental architectures could drastically reduce the size of a
KASSPER system, a multi-processor solution must also be evaluated. Although for single
chip performance Imagine and Raw have similar performance, in multi-processor systems the
benefits of Raw are expected to increase as the efficiency increases as the number of tiles and
the general purpose nature of each individual tile provides a homogeneous system that allows
easier adaptation to system-level overhead routines.

 41

3. Hardware

a. Raw Hardware

(1) Raw Handheld
The AMP team, in collaboration with MIT, designed and fabricated the Raw

Handheld board. This board was used to test the Raw chip, validate the simulated
performance results, and to provide a platform for software development for Raw and PCA.
Figure 27 shows a block diagram of the board, which contains one Raw chip, PC133
SDRAM memory, a PCI bus with three slots, a programmable clock source, and several I/O
connectors (including UART, A/D and D/A, and an LCD). The board uses FPGAs to
implement glue logic between the Raw chip and memory and I/O devices. The Raw
Handheld board is capable of being used as a stand-alone board with boot-up information
residing in the flash memory and the board can also be booted by loading a program from a
host PC (running Linux) through the expansion connector. The MIT team has ported the dbx
debugger to the board. Peak computational power of the Raw chip is 4.6 GFLOPS (at 290
MHz) and the board supports up to 4 GB of memory in standard DIMM packages.

A photograph of the board running in the laboratory is shown in Figure 28. The board
was integrated into a PC case and was used for a DARPATech demonstration in 2004. Raw
Handheld boards were also deployed to users including MIT Lincoln Laboratory, Lockheed
Martin Advanced Technologies Lab, Utah State, and MIT. The board was used to collect
application performance results, which closely matched results collected on the simulator.

Figure 27. Raw Handheld Block Diagram

UARTRS232 UARTRS232

1627070 @ 300MHz

90

74 @ 200? MHz74 @ 200? MHz

512MB
SDRAM
512MB
SDRAM
512MB
SDRAM
512MB
SDRAM

512MB
SDRAM
512MB
SDRAM
512MB
SDRAM
512MB
SDRAM

A/D D/A

XC2V
3000

FPGA

Boot
PROMCPLD Boot
PROMCPLD

XC2V
3000

FPGA

XC2V
3000E
FPGA

PC
I B

us

LCD
Display

XCV
3000

FPGA
Raw
Chip

XC2V
3000

FPGA

Expansion Connector

Expansion Connector

XCV
3000E
FPGA

~10 Gbps

~10 Gbps (~200 x ~50 MHz)

~4 Gbps

 42

(2) Raw Fabric
The AMP team also designed and fabricated a Raw Fabric system. The Raw Fabric is

implemented as a mesh of smaller 2x2 boards with connectors to facilitate short ribbon
cables between boards. These smaller boards allow testing and replacement of smaller
subsystems and are also independently usable as small Fabric systems. A Fabric system
consists of two types of boards. The Raw Fabric concept is shown in Figure 29. The
processor boards each have four Raw chips, implemented in a 2x2 array, along with DC-DC
converters and clock synchronization circuitry. The DC-DC converters are necessary
because power is distributed at 48 volts to reduce power loss across the power distribution
system and then converted to the voltages needed at the chip. The second kind of board in a
Raw Fabric system is an I/O board. I/O boards are distributed around the perimeter of the
Fabric system, and implement the main memory controllers and DRAM, PCI, and other
connectors.

The AMP team intended to build a 64-processor Raw Fabric. However, due to
unexpected problems in manufacturability of the boards, we built two working Raw Fabric
systems, each with four processors (with accompanying I/O boards). Unreliability of the
connectors between boards made the cost of developing a working, 64-processor infeasible
with the remaining scope and resources of the project. A working Raw Fabric system is
shown in Figure 30.

Figure 28. Raw Handheld Laboratory Photograph

 43

b. TRIPS USB Interface
The AMP team also designed a USB interface board for the TRIPS system, to

complement work being done under the TRIPS/XTRIPS effort. The design for this board was
completed under the AMP project, while fabrication and testing will be completed by the
TRIPS team (which includes USC/ISI). Figure 31 is the block diagram of the TRIPS USB
Interface Board. The USB Adaptor Board is connected to the TRIPS Motherboard through
one of the 190-pin FPGA Connectors. All the signal pins on the FPGA Connectors are
connected to the Xilinx FPGA (XC2VP40) on the TRIPS Motherboard. There are two main
sub-systems on the USB Adaptor Board.

Figure 29. Raw Fabric System Concept

Figure 30. Raw Fabric System Running in Laboratory

 44

The USB sub-system contains two separate USB channels. Each channel consists of
one USB Interface Chip and one USB connector. Each USB Interface Chip has one 16-bit
parallel port. This control port is mapped into the memory space of the PPC405 Core inside
the FPGA, which handles all the low-level device control and provides an API for the
applications running on the TRIPS chips.

The memory sub-system consists of a 4MB Flash and a DDR SODIMM socket
supporting at least 256MB of DDR memory. A Xilinx Spartan3 FPGA is used to provide the
Memory Controller function to the PPC405 Core on the TRIPS motherboard. The Flash
stores a stripped-down version of Linux to support the low level USB control tasks. The
DDR provides the needed memory space to run the Linux on the PPC405 Core.

USB may operate at any speed from 10kbps to 480Mbps in one of three speed modes.
A Slow-Speed mode of 10kbps to 100kbps is used for devices such as a USB keyboard or
USB mouse. Full-Speed mode is used by most devices and allows a transfer rate of 500kbps
to 10Mbps. High-Speed mode (defined by USB 2.0) allows rates of up to 480Mbps, with a
speed range of 25Mbps to 480Mbps.

The USB Adaptor Board contains a Cypress Semiconductor CY7C68013A EZ-USB
Microcontroller chip. This chip is the same USB interface chip used in the Opal Kelly
XEM3010 board, chosen as a demonstration vehicle for collaborators at AFRL. This chip has
an integrated USB Transceiver, a Serial Interface Engine, and an 8051 Microcontroller core.
Each channel of USB port contains one CY7C68013A USB Controller chip and one USB
connector. The CY7C68013A supports up to 480Mbits/s at its USB serial interface and
96Mbytes/s burst rate at its parallel interface. The FPGA Interface Connector Bus supports at
least 100MHz of operation. There are two USB channels on this board, each with a 16-bit
data interface. With a maximum burst rate of 96Mbytes/s, the maximum required data
toggling rate is 96M x 8 / 16 = 48MHz, which is well under what the FPGA connector can

FPGA
Connector

2 USB
Connectors

2 USB
Interface

Chips

Power
Supply

and
Connector

2x16

2x96Mbytes/s
Burst Rate

2x480
Mbits/s

256MB
DDR
and

Boot Flash

Spartan3
FPGA

as
Memory

Controller

2x64 64

Max. 48MHz
at 32 data

lines

Max. 66MHz at
64 data lines

Max. 66MHz at
128 data lines

USB Adaptor Card

2x16

Figure 31. TRIPS USB Interface Board Functional Block Diagram

 45

support. Each USB channel’s maximum data rate is 480Mbit/s, which translates into 480M /
8 = 60Mbytes/s, which is under the maximum burst rate supported by the USB chip parallel
interface.

 46

4. Conclusions
The AMP project made important contributions to the understanding of the

programming of polymorphous computing architectures. Polymorphous architectures are a
promising technology for exploiting explicit on-chip parallelism, which the microprocessor
industry has recognized is necessary for the survival of the industry. Software developed
under the PCA program is sufficient for developing some applications on these architectures,
but programming is still a significant unsolved challenge for many types of applications.
Architecture-specific tools help, but require specialized architectural expertise that many
application developers will not have. The Morphware two-level compiler is intended to work
at a higher level, but still has performance challenges to be solved, including extracting
parallelism and targeting polymorphous architectures more efficiently. The tools that the
AMP project developed are invaluable for exploring these programming paradigms, but are
not primarily intended for use by application programmers outside of the architecture and
compiler research communities. The porting of standard interfaces like MPI and VSIPL will
help these architectures to gain acceptance, but these standards were not developed
specifically for polymorphous architectures and will not sufficiently exploit the capabilities
of these architectures by themselves. The application performance studies that the AMP team
has conducted have shown that polymorphous architectures do have significant performance
potential for a wide variety of important applications, so the continued investment in
software for these architectures is critical. Additional hardware research also would likely
lead to improved programmability.

The prototype hardware that the AMP team developed has enabled the development
of realistic and complex applications for polymorphous architectures. Simulations are
inherently too slow to run realistically sized applications. Large applications must be
developed to motivate and test the software infrastructure needed to make polymorphous
computing useful to the DoD community. The AMP hardware has provided a platform that
facilitates this development.

 47

5. References
[1] The Morphware Forum, “Introduction to Morphware: Software Architecture for

Polymorphous Computing Architectures,” Version 1.0, Feb. 23, 2004. Available at
http://www.morphware.org.

[2] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, J.
W. Lee, P. Johnson, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal, “The Raw Microprocessor: A
Computational Fabric for Software Circuits and General Purpose Programs,” IEEE
Micro, 22(2), pp. 25-35, March/April 2002.

[3] S. Lohani, and S. S. Bhattacharyya, “System Synthesis for Polymorphous Computing
Architectures,” Technical Report UMIACS-TR-2002-12, Institute for Advanced
Computer Studies, University of Maryland at College Park, February 2002. Also
Computer Science Technical Report CS-TR-4330.

[4] W. Gropp, E. L. Lusk, N. E. Doss, and A. Skjellum, “A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard,” Parallel Computing,
22(6): 789-828 (1996).

[5] M. Wicks, “Incorporating Knowledge Base Techniques in Radar Signal Processing –
Past, Present and Future,” KASSPER Industry Day, Washington, DC, April 3, 2002.

[6] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe and A. Agarwal, “Baring it all to Software:
Raw Machines,” IEEE Computer, September 1997, pp. 86-93.

[7] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and
Synchronization, Marcel Dekker, 2000.

[8] S. S. Bhattacharyya. Hardware/Software co-synthesis of DSP systems. In Y.H. Hu,
editor, Programmable Digital Signal Processor: Architecture, Programming, and
Applications, pp.333-378. Marcel Dekker, Inc., 2002.

[9] T. Blickle, J. Teich, and L. Thiele, “System-level Synthesis Using Evolutionary
Algorithms.” Journal of Design Automation for Embedded Systems, 3(1):23-58, 1998.

[10] E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto approach.” IEEE Transactions on Evolutionary
Computation, 3(4): 257-271, November 1999.

[11] F. Chudak, “Improved Approximation Algorithms for Incapacitated Facility Location,”
In R. E. Bixby, E. A. Boyd, and R. Z. Rios-Mercado, eds., Integer Programming and
Combinatorial Optimization, Springer LNCS Vol. 1412, 180-194, 1998.

[12] T. Cormen et al., Introduction to Algorithms, McGraw Hill, 2000.
[13] K. Jain and V. V. Vazirani, “Approximation Algorithms for Metric Facility Location

and K-median Problems Using the Primal-dual Scheme and Lagrangian Relaxation,”
Proc. Foundations of Computer Science, 1999.

[14] D. B. Shmoys, E. Tardos, and K. I. Aardal, “Approximation Algorithms of Facility
Location Problems.” Proc. 29th ACM Symp. On Theory of Computing, 265-274, 1997.

http://www.morphware.org

 48

[15] A. Y. Zomaya, “Parallel and Distributed Computing: The Scene, the Props, the
Players,” Parallel and Distributed Computing Handbook, A.Y. Zomaya, ed., ppl. 5-23,
New York: McGraw-Hill, 1996.

[16] M. B. Taylor, et. al, “Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay
Architecture for ILP and Streams,” Proceedings of International Symposium on
Computer Architecture, München, Germany, June 2004.

[17] P. Mattson, W. Thies, L. Hammond, and M. V. Raytheon, “Streaming Virtual Machine
Specification,” Version 1.0.1, http://www.morphware.org, March 2005.

[18] J. Suh and J. O. McMahon, “Implementations of FIR for MONARCH Processor,” 10th
High Performance Embedded Computing Workshop, Boston, MA, Sept. 2006.

[19] M. Vahey, et al., “MONARCH: A First Generation Polymorphic Computing
Processor,” 10th High Performance Embedded Computing Workshop, Boston, MA,
Sept. 2006.

[20] D. Burger, S. W. Keckler, and K. S. McKinley, et al., “Scaling to the End of Silicon
with EDGE Architectures,” IEEE Computer, 37 (7), pp. 44-55, July, 2004.

[21] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. C. Burger, and K.
S. McKinley, “Compiling for EDGE Architectures,” International Conference on Code
Generation and Optimization (CGO), March, 2006.

[22] F Labonte, P. Mattson, I. Buck, C. Kozyrakis and M. Horowitz, “The Stream Virtual
Machine,” 13th International Conference on Parallel Architectures and Compilation
Techniques, September 2004.

[23] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M. Horowitz, “Architecture and
Circuit Techniques for a Reconfigurable Memory Block,” International Solid State
Circuits Conference, February 2004.

[24] W. Coate and J. Lebak, “Morphing Scenarios For The GMTI Portion Of The PCA
Integrated Radar Tracker,” Massachusetts Institute of Technology Lincoln Laboratory,
2004.

[25] C. Kozyrakis, “Scalable Vector Media-Processors for Embedded Systems,” Ph. D.
dissertation, UC Berkeley, May 2002.

[26] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson, J. Namkoong, J. D.
Owens, B. Towles, and A. Chang., “Imagine: Media Processing with Streams,” IEEE
Micro, March/April 2001, pp. 35-46.

[27] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. R. Mattson,
and J. D. Owens, “A Bandwidth-Efficient Architecture for Media Processing,” 31st
Annual International Symposium on Microarchitecture, Dallas, Texas, November 1998.

[28] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffmann,
P. Johnson, W. Lee, A. Saraf, N. Shnidman, V. Strumpen, S. Amarasinghe, and A.
Agarwal, “A 16-issue Multiple-Program-Counter Microprocessor with Point-to-Point
Scalar Operand Network,” Proceedings of the IEEE International Solid-State Circuits
Conference, February 2003.

[29] Apple, http://www.apple.com/powermac/, 2002.
[30] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 2nd

Edition, Morgan Kaufman Publishers, Inc., 1996.

http://www.morphware.org
http://www.apple.com/powermac

 49

[31] J. Bergin and P. Techau, “High Fidelity Site-Specific Radar Simulation”
KASSPER ’02 Workshop Datacube,” ISL Tech. Report ISL-SCRD-TR-02-105, May
2002.

[32] C. Teixeira, J. Bergin, and P. Techau, “Reduced Degree-of-Freedom STAP with
Knowledge-Aided Pre-Whitening,” 2003 KASSPER Workshop, April 2003.

[33] B. C. Gunter, W. C. Reiley, and R. A. Van de Gejin, “Parallel Out-of-Core Cholesky
and QR Factorizations with POOCLAPACK,” IPDPS, San Francisco, CA, April 2001.

[34] H. Hoffman, V. Strumpen, and A. Agarwal, “Stream Algorithms and Architecture,”
Laboratory for Computer Science,” MIT, Technical Memo MIT-LCS-TM-636,
March 2003.

[35] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press, 2002, pp
96-98.

 50

6. Acronyms
AB, ABF Adaptive Beamforming
ACIP Architecture for Cognitive Information Processing
A/D Analog-to-Digital
AFRL Air Force Research Laboratory
ALU Arithmetic Logic Unit
AMP Abstract Machines for Polymorphous computing
API Application Programming Interface
ASIC Application Specific Integrated Circuit
CFAR Constant False Alarm Rate
CMF Configuration Modeling (or Management) Framework
COTS Commercial Off-The-Shelf
CPI Coherent Processing Interval
CPU Central Processing Unit
CS Configuration Store
CSLC Coherent SideLobe Canceller
D/A Digital-to-Analog
DARPA Defense Advanced Research Projects Agency
DC Direct Current
DDR Double Data Rate
DEM Digital Elevation Map
DF Doppler Filtering
DIMM Dual In-line Memory Module
DMA Direct Memory Access
DoD Department of Defense
DRAM Dynamic Random Access Memory
DSA Decoupled Systolic Array
DSP Digital Signal Processing
EW Electronic Warfare
FIR Finite Impulse Response
FFT Fast Fourier Transform
FLB Floating-point Lower Bound
FLOPS FLOating point Operations Per Second
FPGA Field Programmable Gate Array
GFLOPS Giga-FLOating point Operations Per Second
GMTI Ground Moving Target Indicator
GUI Graphical User Interface
HLC High-Level Compiler
IFFT Inverse Fast Fourier Transform
ILP Instruction Level Parallelism
I/O Input/Output
IPC Inter-Processor Communication

 51

IRT Integrated Radar Tracker
ISI Information Sciences Institute
IUB Implementation Upper Bound
KASSPER Knowledge Aided Signal and Sensor Processing with Expert Reasoning
KB Knowledge Base
Kbps Kilo-bits per second
LCD Liquid Crystal Display
LLC Low-Level Compiler
LULC Land Use Land Cover
MB MegaByte
Mbps Mega-bits per second
MHz Mega-Hertz
MIMD Multiple Instruction Multiple Data
MIT Massachusetts Institute of Technology
MONARCH MOrphable Networked ARCHitecture
MPI Message Passing Interface
PC Pulse Compression, Personal Computer
PCA Polymorphous Computer Architecture
PCI Peripheral Component Interface
PCR Polymorphic Channelized Receiver
PE Parameter Estimation
PPC PowerPC
RISC Reduced Instruction Set Computer
RF Radio Frequency
SA Subband Analysis
SAAL Stable Architecture Abstraction Layer
SAPI Stable Application Programming Interface
SAR Synthetic Aperture Radar
SIMD Single Instruction Multiple Data
SINR Signal to Interference and Noise Ratio
SODIMM Small Outline Dual In-line Memory Module
SRF Stream Register File
SS Subband Synthesis
STAP Space-Time Adaptive Processing
SVD Singular Value Decomposition
SVM Streaming Virtual Machine
TBMD Theater Ballistic Missile Defense
TDE Time Delay and Equalization
TRIPS Tera-op Reliable, Intelligently adaptive Processing System
TVM Treaded Virtual Machine
UART Universal Asynchronous Receiver/Transmitter
UB Upper Bound
USAF United States Air Force
USB Universal Serial Bus

 52

USC University of Southern California
VIRAM Vector Intelligent Random Access Memory
VSIPL Vector/Signal/Image Processing Library
XML eXtensible Markup Language

